

D3.1 TECHNICAL SPECIFICATIONS AND DATA MAPPING.

AUTHORS Maria Luisa Quarta

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Research Executive Agency (REA). Neither the European Union nor the granting authority can be held responsible for them.

resilientculturallandscapes.eu

Deliverable No.	D3.1
Work Package	WP3
Dissemination Level	PU
Author(s)	SISTEMA (Maria Luisa Quarta)
Co-author(s)	SISTEMA (Marco Folegani), FhG (Daniel Lückerath, Katharina Milde), DRAXIS (Artemis Lavasa), LINKS (Fabio Caffaro, Mario Chiesa, Marina Nadalin, Federico Oldani, Angelica Urbanelli) TEC (Asel Villanueva, Pedro Gonzalez Bascoy, Iñigo Martinez Criado)
Contributor(s)	UNIBO (Simona Bravaglieri)
Due date	31 July 2024
Actual submission date	16 July 2024
Status	Submitted
Revision	Version 1.0
Reviewed by (if applicable)	CMCC (Dana Salpina), ICLEI (Gioele Racca)

TABLE OF CONTENTS

1	Introduction	11
1.1	Aims and objectives	12
1.2	Relation with other project activities	12
1.3	Report structure	13
2	Digital Solutions Technical Specifications	15
2.1	Introduction	16
2.2	ATLAS	19
2.3	Meta-repository	22
2.4	Data Lake	27
2.5	Importer & Mapper	34
2.6	Web application / Frontend	40
2.7	Geospatial Data Intelligent Platform	43
2.8	Generative Al	47
2.9	AR Mobile Application	50
2.10	Mapping Models	55
2.11	Mobile Chatbot	58
2.12	Social Media Module	61
2.13	Incremental Spatial Decision Support System (ISDSS)	64
2.14	One-Stop-Shop	67
2.15	Summary and Categorization of Solutions	71
3	Data Model Technical Specifications	73
3.1	Application Domain Requirements	73
3.2	Geospatial Requirements	74
3.3	Generic Requirements	75
3.4	Data Models	77

4	Datasets Categorization and Description	80
4.1 (DMF)	Methodology for Data Description: The Data Mapping For 80	m
4.2	Data Categorization and Data Matching with Indicators	82
4.2.1	Data at Local Scale	86
4.2.2 4.2.3	Data at European Scale New Data	92 93
5	Natural Language Processing (NLP) for heritage	
charac	cterization	94
5.1	State of the art	95
5.2	Preliminary steps	95
5.3	Characterizing heritage values through canonical texts	96
5.4	Characterizing heritage values through UNESCO's WHL	97
5.4.1	Encoders	98
5.4.2 5.5	In-context learning Outcome	99 101
5.5	oucome	101
6	Conclusion	102
7	References	102
8	Annex I	107
9	Annex II	108
10	Annex III	126
11	Annex IV	139
12	Annex V	145
13	Partners	147

Summary

The present document describes the technical specifications of the different digital solutions (tools) being developed in the RescueME project within WP3 to facilitate landscape managers activities in assessment of resilience and risk, well-being of their communities and safeguarding cultural heritage.

Following a brief general description of each solution and its basic functions, this deliverable comprises mostly questions about the architecture of each tool and how they can interoperate with other tools and services, technical requirements, and functionalities. Each partner responsible for developing a tool during the project's lifetime has been invited to contribute to the document through filling out a template on technical specifications.

This document also includes the methodology adopted to describe the different datasets through the Data Mapping Form (DMF) implemented within ST3.1.3. By collecting standardised data descriptions (metadata), the DMF represents one of the first concrete measures that have been put in place within the project, not only to ensure that the FAIR principles (Findability, Accessibility, Interoperability, Reusability) [1] are applied but also to allow the evolution from data to useful information (indicators). Thanks to the DMF, both existing and newly generated data are made easily accessible, thus fostering inclusivity and collaboration, also outside the project.

Moreover, the present deliverable highlights the connection between WP1 (Assessment and monitoring of heritage values and resilience) and WP3 (Data Management and digital solutions) activities by describing the methodology used to match the datasets described in the DMF and the list of indicators identified within Task 1.1 (Structure of the model & indicators and metrics for characterisation of European CL, hazards and climate scenarios). The Actionable Resilient Historic Landscape (RHL) framework designed within this task works as a metric system for

measuring resilience across different Cultural Landscapes (see D1.1 - Actionable Resilient Historic Landscape Framework [2]).

Given that indicators have been developed with both European and local levels in mind, the present document includes both the data mapping for the ATLAS and the preliminary list of data selected at local scale by each of the five RescueME case studies (so called R-Labscapes: Portovenere, Cinque Terre & the Island, Historical Irrigation System at l'Horta de València, Hamburg – Neuwerk in the National Park Hamburg Wadden Sea, Psiloritis UNESCO Global geopark, Defensive system of Zadar). In addition, a description of the data newly generated by some of the RescueME tools is provided.

During the next phases of the project, the WP1 will be focused on the definition of the different impact models for the R-Labscapes considering the specific hazards which characterise them and designing the final list of indicators. For this reason, the above-mentioned datasets/indicators matching represents just the groundwork to set the design and requirements for the implementation of the different solutions.

List of figures

Figure 1 - RescueME high-level architecture schema	15
Figure 2 - RescueME ATLAS/ISDSS/Meta-repository interconnection	16
Figure 3 - Categorization of the RescueME solutions with respect to the data value chair	n.18
Figure 4 – ATLAS indicators' generation workflow	19
Figure 5 - Landing page of the RescueME ATLAS	20
Figure 6 - RescueME Meta-repository of solutions	24
Figure 7 - RescueME Data Lake architecture	31
Figure 8 - CKAN internal architecture	32
Figure 9 - RescueME Data Lake Graphic User Interface	34
Figure 10 - RescueME Importer & Mapper architecture	35
Figure 11 - Example of a layer imported by the RescueME Importer & Mapper	37
Figure 12 - RescueME Geospatial data intelligent platform mock-up	43
Figure 13 – Examples of artworks generated by the RescueME Generative AI tool	47
Figure 14 - Schema representing the flow of artworks generation with the RescueME	
Generative AI tool	48
Figure 15 - Prototypes of RescueME AR visualization of Chatbot reports, Generative AI	
paintings and 3D maps	51
Figure 16 - Examples of RescueME Mapping Models output.	55
Figure 17 - The RescueME Mobile Chatbot architecture	58
Figure 18 - The RescueME Social Media module architecture	61
Figure 19 - Connection between the RescueME ISDSS, the Meta-repository and the ATLA	٩S
	64
Figure 20 - Mock-up of an exemplary page of the RescueME One-Stop-Shop based on th	e
ARCH Hub [21]	69
Figure 21 - Spreadsheet elaborated to match the datasets described in the RescueME D	MF
and the set of resilience indicators from T1.1	84
Figure 22 – Psiloritis R.Labscape area of interest for RescueME	87
Figure 23 - Neuwerk R-Labscape area of interest for RescueME	89
Figure 24 - Portovenere, Cinque Terre and the Islands R-Labscape area of interest for	
RescueME	90
Figure 25 - L'Horta de Valencia R-Labscape area of interest for RescueME	91
Figure 26 - Zadar R-Labscape area of interest for RescueME	92
Figure 27 - Process by which sentences are identified by the RescueME NLP model	96
Figure 28 - Performance of the RescueME NLP model	99
Figure 29 - An example of data description from the LINKS sheet in the RescueME Data	
Mapping Form (DMF)	107

List of tables

Table 1 - RescueME tools and solutions	17
Table 2 - Technical specifications of the RescueME ATLAS	22
Table 3 - Technical specifications of the RescueME Meta-repository	27
Table 4 – Technical specifications of the RescueME Data Lake	30
Table 5 - CKAN plugins	33
Table 6 - Technical specifications of the RescueME Importer & Mapper	40
Table 7 - Technical specifications of the RescueME Web application / Frontend	42
Table 8 - Technical specifications of the RescueME Geospatial data intelligent platform	47
Table 9 - Technical specifications of the RescueME Generative AI tool	50
Table 10 - Technical specifications of the RescueME AI mobile application	54
Table 11 - Technical specifications of the RescueME Mapping Models	57
Table 12 - Technical specifications of the RescueME Mobile Chatbot	61
Table 13 - Technical specifications of the RescueME Social Media module	63
Table 14 - Technical specifications of the RescueME ISDSS	67
Table 15 - Technical specifications of the RescueME One-Stop-Shop	71
Table 16 - RescueME Application Domain Requirements for Data Models	74
Table 17 - RescueME Geospatial Requirements for Data Models	75
Table 18 - RescueME Generic Requirements for Data Models	77
Table 19 - Technical specifications of RescueME CityGML Data Models	77
Table 20 - Technical specifications of RescueME 3D Tiles Data Models	78
Table 21 - Technical specifications of RescueME GeoJSON Data Models	78
Table 22 - Technical specifications of RescueME WMS Data Models	79
Table 23 - Technical specifications of RescueME JSON Data Models	80
Table 24 - RescueME Data Mapping Form template	82

List of acronyms

ACRONYM / ABBREVIATION	DESCRIPTION
AI	Artificial Intelligence
Aol	Area of Interest
AR	Augmented Reality
BERT	Bidirectional Encoder Representations from Transformers
CAMS	Copernicus Atmosphere Monitoring Service
CDS	Copernicus Climate Data Store
CEMS	Copernicus Emergency Management Service
СН	Cultural Heritage
CIG	Crowdsourcing Intelligent Gateway
CL	Cultural Landscape
CLMS	Copernicus Land Monitoring Service
CoP	Community of Practice
DMF	Data Mapping Form
EEA	European Environment Agency
GAIA	Geodata Analytics and Intelligent Architecture
GDIP	Geospatial Data Intelligent Platform
GLOCAL	Both Global and Local
GPL	General Public License
GUF	Global Urban Footprint
IoT	Internet of Things
ISDSS	Incremental Spatial Decision Support System
JRC	Joint Research Centre
LLM	Large Language Models
MMLU	Massive Multitask Language Understanding
N/A	Not Applicable
NDSI	Normalized Snow Cover Index
NDWI	Normalized Water Index
NLP	Natural Language Processing
NUTS	Nomenclature of Territorial Units for Statistics
OGC	Open Geospatial Consortium
OSM	Open Street Map
RACER	Relevant, Accepted, Credible, Easy and Robust
RHL	Resilient Historic Landscape
SETS	Socio-economic-technical systems

SOUV	Statements of Outstanding Universal Value
SPA	Single Page Application
VR	Virtual Reality
WHL	World Heritage List
WP	Work Package

1 Introduction

RescueME aims to demonstrate how an innovative data-driven, community-based, heritagecentric actionable landscape approach to resilience enhancement can protect our cultural heritage and landscapes while supporting the transition toward a green society and economy that sustains resilient, cohesive, nature-connected communities. RescueME will develop, test, and demonstrate the effectiveness of an Actionable Framework based on the Resilient Historical Landscape approach (RHL) complemented by data, models, methods, and tools. The project will assess risks and opportunities, co-develop inclusive and just resilience strategies, and innovative solutions to protect European Cultural Heritage (CH) and Cultural Landscapes (CL) from climate change, disaster risk, as well as other stressors (such as pollution and over-tourism) with special focus on European coastal landscapes.

Within this project, the WP3 (Data Management and Digital Solutions) aims to deliver a set of advanced digital solutions, easily accessible through a single application portal (T3.4 -RescueME One-Stop Shop). The design and development of all the foreseen digital solutions follow a user-centred approach, based on a common set of definitions (T3.1 - Technical Specifications and Data Preparation), including a comprehensive multi-scale data model that will both adhere to the conceptual framework developed in WP1 (Assessment and Monitoring of Heritage Values and Resilience). The user-centred approach takes advantage of a series of workshops (both in-presence during kick-off and general assembly events, and online as within Community Meetups event series or organized on purpose) to elicit user wants and needs, scenarios and specific R-Labscapes' conditions, like main focus, hazards, existing initiatives, data, etc. The workshops so far organised, as well as the future ones, take the forms of brainstorming sessions, 1-to-1 sessions, interviews, and other creative sessions involving UI elements mock-ups, concept and conditions clustering and prioritization, and more. Other valuable inputs come from other WPs and tasks outputs, like from the ones focused on the design and development of the ATLAS and on the definition of the Impact Chains, and from the overall knowledge developed within the Consortium and during all the different activities.

The digital solutions will include a geospatial and interoperable Data Lake, a Geospatial Data Intelligent Platform for heterogeneous data aggregation, processing, and visualization, and a set of Artificial Intelligence (AI) -based tools and solutions. An Incremental Spatial Decision Support System (ISDSS) will be designed and developed to increase the resilience of CH/CL leveraging the outputs of WP1 (decision-making pathways) and WP2 (Meta-repository of solutions).

The implemented tools and solutions will be trialled via the RescueME R-Labscapes to reach out different types of local communities (citizen scientists, researchers, policy makers, CH practitioners ...). Moreover, the European Community of Practice (CoP) set up in the context

of WP4 (T4.6) will work as group of early adopters of the RescueME research outputs, including, for some of them, the tools and solutions implemented within WP3.

1.1 Aims and objectives

Overall, this document aims to serve as a comprehensive reference for all partners involved in the development, implementation, and operation of the RescueME digital solutions, guiding them through the entire lifecycle of the project from conception to deployment and beyond. To do so, the present deliverable includes:

- **Technical Specifications**: detailing the technical requirements and specifications for the digital solutions being implemented (including hardware, software, networking, and any other technical components necessary for the solution).
- **Data Mapping**: describing how data flows within the digital solution, including its sources, destinations, formats, transformations, and any data mapping required between different systems or components.
- **Interoperability**: ensuring that the digital solutions can interoperate with existing systems or external services as needed and specifying any interfaces or integration points required.
- **Functional Requirements**: outlining the functional capabilities and features of the digital solutions, including user interfaces, workflows, and any other user interactions.
- **Performance requirements**: defining performance metrics and expectations for the digital solutions, such as response times, throughput, scalability, and reliability.
- Security considerations: addressing security requirements and considerations for the digital solutions, including authentication, authorization, encryption, data protection, and compliance with relevant regulations or standards.
- **Deployment and operations**: providing guidance for deploying, configuring, monitoring, and maintaining digital solutions in production environments, including any necessary documentation, training, and support procedures.

1.2 Relation with other project activities

Within the framework of the RescueME project, WP3 serves as a cornerstone, intimately linked with other work packages (WPs).

In particular, the following WPs are directly connected to the WP3 activities:

• WP1 - Assessment and monitoring of heritage values and resilience: the indicators identified within this WP to characterise the heritage diversity of CLs will be calculated starting from the data described in the Data mapping Form (DMF) and then they will be made available through the different solutions and tools implemented

within WP3. Moreover, several WP1 tasks are directly or indirectly connected to the data described in this deliverable:

- **Task 1.1** (Structure of the model & indicators and metrics for characterisation of European CL, hazards and climate scenarios).
- **Task 1.2** (ATLAS of European coastal heritage landscapes typologies and climate change impacts).
- **Task 1.3** (Multiscale risk and resilience assessment of coastal CL).
- Task 1.5 (Transformative pathways monitoring).
- WP2 Transformative resilience strategies: the Meta-repository implemented by this WP represents one of the innovative solutions that RescueME aims at developing.
- WP4 Co-creation of local solutions with communities: the R-Labscapes, which are directly involved in this WP, are the main beneficiaries of the tools and solutions implemented. Starting from the indicators identified in Task 1.1, the following task provides a resilience baseline for each R-labscape:
 - **Task 4.2** (Co-creation of resilience baseline and Impact Chains), which aims to present the current status in the R-Labscapes regarding resilience and (climate) hazards and represents the views and experiences of the stakeholders involved. The results of this task provide a starting point for the co-creation of solutions, measures, and resilience strategies later in the project.
- WP6 Project Management: as part of the creation of the necessary governance structure for effective project direction and management, this WP delivers the Data Management Plan (D6.3) which aims at ensuring quality, (re)usability, and preservation of the project's data, and its valorisation.

1.3 Report structure

The present deliverable includes:

- Section 1 Introduction, which includes aims and objectives of the document, relation with other project activities and description of the document structure.
- Section 2 Digital Solutions Technical Specifications, which delves into the technical aspects of the proposed digital solutions for enhancing the resilience of cultural and natural heritage sites. It outlines the architecture, functionalities, and key features of the solutions, starting from the preliminary analysis performed through the internal deliverables from ST3.1.1 and ST3.1.2.
- Section 3 Data Model Technical Specifications, which details the structure, relationships, and attributes of the data model designed to support the resilience solutions. It discusses the methodologies used in data modelling and highlights the importance of data interoperability and scalability.

- Section 4 Datasets Categorization and Description, which provides an in-depth analysis of the datasets utilised in the project. It categorises the datasets based on their relevance to cultural and natural heritage resilience and provides detailed descriptions of each dataset. Additionally, it discusses data sources, collection methods, and quality assurance processes.
- Section 5 Natural Language Processing (NLP) for Local Knowledge, which focuses on identified data sources of local knowledge (WP4) to identify innovative ways to characterise heritage values.
- Section 6 Conclusions

2 Digital Solutions Technical Specifications

RescueME extends the architecture implemented in the SHELTER [3], I-REACT [4] and ResCult [5] projects to allow the ingestion and the processing of heterogeneous data sources (e.g., earth observation, sensors, and user-generated content) that will be integrated into a Big Data management platform considering relevant technologies and concepts, data management principles (e.g. FAIR [1], GEO data sharing principles [6]), standards (e.g. INSPIRE [7]), and policies (e.g. GDPR)). Figure 1 shows the RescueME high-level architecture schema which includes the different solutions described in the present deliverable and their interconnections.

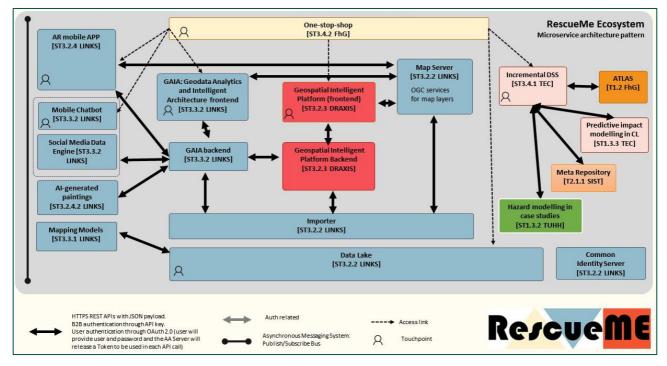


Figure 1 - RescueME high-level architecture schema

New AI algorithms will be trained and used to automatically classify social media posts according to a specific CH characterization taxonomy, separate informative from non-informative content, exploit Copernicus data to delineate the impact area of floods, landslides, and wildfires, and estimate their impact on the CH and landscape. The social media intelligence in RescueME will be built upon existing tools and AI models developed and evaluated in previous H2020 projects (e.g. SHELTER). Moreover, a Chatbot will be created to provide emergency management functionalities to practitioners, including first

responders, while providing risk educational content to improve citizen awareness. The Chatbot will be used as a crowdsourcing solution to gather and validate data, and to provide additional channels to inform and prepare people. To integrate the outputs of AI models, as well as risk assessments on the CLs, a web-based geospatial platform will be developed. It will allow further data processing and visualization, considering the needs and gaps that will emerge from the project case studies. In a selected case, an Augmented Reality (AR) application will be realised to provide a more immersive data visualisation experience.

An Incremental Spatial Decision Support System (ISDSS) for the design and monitoring o Transformative Pathways will be developed implementing different levels of decision making with different levels of information and technical requirements. The entry point will be the ATLAS of impacts linking CL typologies with the Meta-repository of solutions to offer earlystage decision making (see Figure 2).

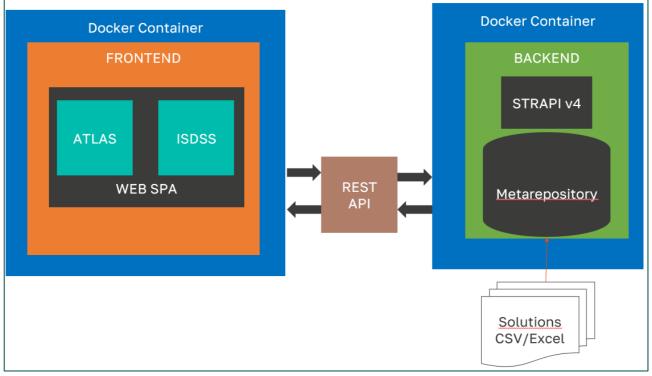


Figure 2 - RescueME ATLAS/ISDSS/Meta-repository interconnection

2.1 Introduction

The goal of this document is to produce technical descriptions of the digital solutions (tools) being developed in the RescueME project. The approach for achieving this goal was to invite each partner responsible for developing a tool during the project's lifetime to contribute to the document through filling out a template on technical specifications, requirements, and (preliminary) functionalities.

More specifically, the tools in question include the following (ordered by task):

	RescueMe TOOLS									
No.	Tool or solution	WP, task and partner responsible	Identifier	Due						
0	ATLAS	WP1 – T1.2 TEC	TL00_TEC-A	M12						
1	Meta-repository	WP2 – T2.1 – ST2.1.1 SIST	TL01_SIST-A	M24						
2	Data lake	WP3 - T3.2 - ST3.2.2 LINKS	TL02_LINKS-A	M18						
3	Importer & Mapper	WP3 - T3.2 - ST3.2.2 LINKS	TL03_LINKS-B	M18						
4	Web Application/ Frontend	WP3 - T3.2 - ST3.2.2 LINKS	TL04_LINKS-C	M18						
5	Geospatial data intelligent platform	WP3 - T3.2 - ST3.2.3 DRAXIS	TL05_DRAXIS-A	M30						
6	Generative Al	WP3 - T3.2 - ST3.2.4 LINKS	TL06_LINKS-D	M30						
7	AR Mobile Application	WP3 - T3.2 - ST3.2.4 LINKS	TL07_LINKS-E	M30						
8	Mapping Models	WP3 - T3.3 - ST3.3.1 LINKS	TL08_LINKS-F	M24						
9	Mobile chatbot	WP3 - T3.3 - ST3.3.2 LINKS	TL09_LINKS-G	M24						
10	Social Media module	WP3 - T3.3 - ST3.3.2 LINKS	TL10_LINKS-H	M24						
11	Incremental Spatial Decision Support System (ISDSS)	WP3 – T3.4 - ST3.4.1 TEC	TL11_TEC-B	M34						
12	One-stop-shop	WP3 – T3.4 - ST3.4.2 FhG	TL12_FHG-A	M34						

Table 1 - RescueME tools and solutions

Figure 3 summarizes the different solutions by mapping them towards some relevant steps of the data value chain:

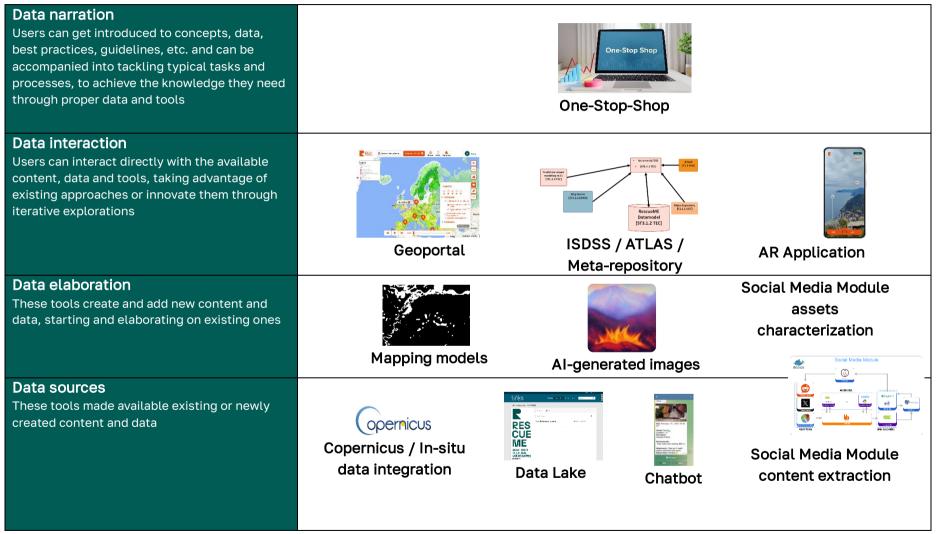


Figure 3 - Categorization of the RescueME solutions with respect to the data value chain.

Some of the information provided might only be provisional or not available; the intention is that information is continuously refined as development progresses, and in consultation with the project's R-Labscapes and their wider community, especially in terms of their functionality to directly inform the development of the tools.

2.2 ATLAS

The RescueME ATLAS is a web tool whose objective is to visualise context information at the European level. In the RescueME project, local heritage data has been collected and hazards have been modelled. Thanks to these two points, predictive impact modelling is being developed. As a result of the predictive impact modelling and cross-referencing it with the context information that has been collected for Europe at the NUTS3 level, the ATLAS allows to visualise the project regions of Europe at the NUTS3 level, with associated context information (human capital, build capital...) and also the calculated risk information (Air quality, droughts, heatwaves, landslides, pluvial floods, river floods and wildfires). In Figure 4 the workflow for generating the indicators is shown:

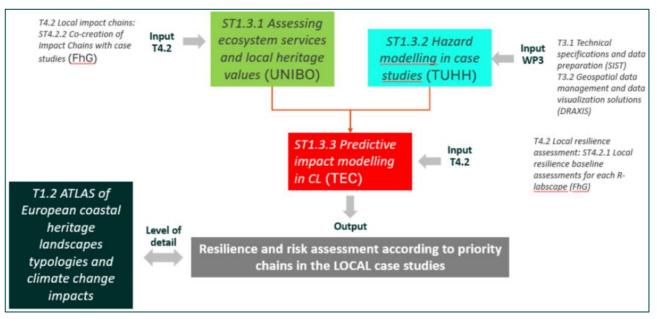


Figure 4 – ATLAS indicators' generation workflow

This tool also has a user-friendly interface, which allows the user to navigate, change maps or even show information about how these indicators have been calculated and displayed. Additionally, by clicking on any of the regions on the map it is possible to see more details of the information associated with the indicator that is loaded at that moment. The RescueME Atlas can be accessed through the following link:

https://appwerescuemep01.azurewebsites.net/

The ATLAS allows the user to perform a comparison of all the coastal areas of Europe at the NUTS3 level, this supports the user in selecting the region of interest when launching the ISDSS. The ISDSS then allows the user to reach a higher level of precision (municipal, cadastral, or building level, depending on the case).

Figure 5 shows the ATLAS landing page while Table 2 summarises its technical specifications. More details about the activities performed to implement the ATLAS, the methods of analysis and the achieved results are available in D1.2 - Atlas of EU Coastal Heritage Landscape Typologies and CC Impacts [8].

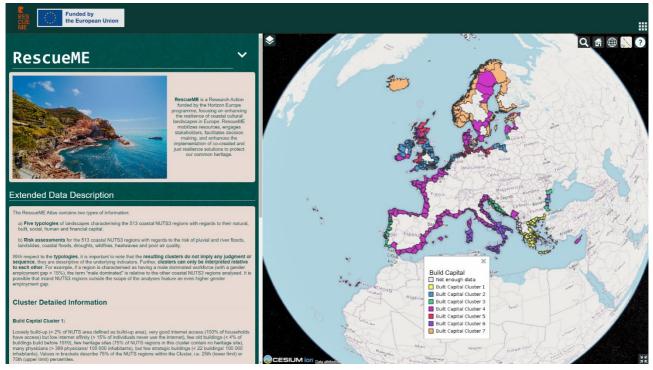


Figure 5 - Landing page of the RescueME ATLAS

SOLUTION	ATLAS
ID	TL00_TEC-A
Type of the solution	Software Component
Solution description	The RescueME ATLAS is a web application, accessible from https://appwerescuemep01.azurewebsites.net/. The application screen is divided into two parts, with the project information on the left side and a 3D globe showing the maps associated with the indicators on the left side. The user can interact with the calculated indicators, retrieving detailed information about them. The map is also interactive, showing a legend and allowing the user to

	access further information on the parameters and their
	description by clicking on the different polygons.
WP	WP1
Task	T1.2
Responsible	Amaia Lopez de Aguileta (TECNALIA)
Description	
Functional Description	TECNALIA_ATLAS_001 Map Visualisation: the ATLAS should have the ability to visualise different maps from geoserver. TECNALIA_ATLAS_002 Interactive Maps: the maps should
	be interactive, allowing the user to visualise more information or to change the queries.
	TECNALIA_ATLAS_003 Context Information: the ATLAS should provide context information about the indicators visualised.
Technical Description	Map Visualization: Map visualisation could be achieved thanks to the integration of Cesium.js for loading maps from different sources, in this case geoserver is the selected one. Interactive Maps: To ensure that the user can retrieve the required data, custom click event will be developed, showing the information of the RescueME project. Context Information: To help the users to understand the results showed in the ATLAS, the information about the project and the indicators will be displayed in a lateral panel.
Input	Precalculated information and risk maps (via geoserver)
Output	Web visualisation
Version	1.0
License / Terms of use /	CityMirror Viewer (registered)
SLA	CityMirror (registered)
Online documentation	A link will be provided when available
Programming Language	Javascript
Usage description	
Frequency of use	Solution will be deployed in a server and will be available during the duration of the project.
Execution time	The application response will be real-time.
System requirements	CPU with 2.4 GHz 4GB RAM
	GPU desirable but not mandatory

Interoperability aspects	
Related data models	Geoserver, Shape
Information exchange	REST API
protocol	
Available API	A link will be provided when available.
Integration aspects	
Installation requirements	Solution will be provided as a docker container, it can be
	deployed in any server with docker.
Integration requirements	N/A
Software dependencies	N/A
Technical dependencies	N/A
Deployment requirements	N/A
Example of existing	N/A
integration	
Critical factors for the	N/A
integration	
Connection to other tools	Predictive impact modelling, Importer & Mapper, ISDSS
Other information	-
Security aspects	
Security issues to be	N/A
covered	
Integrated security	N/A
solution	
Existing security solution	N/A
Data management	
Data sharing and access	N/A
limitations	
Data interoperability	N/A
limitations	
Standards used	N/A

Table 2 - Technical specifications of the RescueME ATLAS

2.3 Meta-repository

The main objective of the Meta-repository (implemented within Task 2.1 - Meta-repository of resilience solutions for CL) is to offer the R-Labscapes and decision makers an integrated searchable database of solutions characterised by their effectiveness in improving CL resilience. A decision-making method will group the collected solutions into packages and monitoring indicators, and it will be implemented in the multi-level dynamic ISDSS and

22 - RescueMe - D3.1 TECHNICAL SPECIFICATIONS AND DATA MAPPING. - 16/07/20244

monitoring platform, thanks to the RescueME Data Model (see Section 3 for more details). This will link the Meta-repository, the collected best practices, and the maps of policies to support the definition of pathways working with different levels of information using the ATLAS of coastal landscapes (TL00_TEC-A) as entry point (see Figure 2).

To facilitate the extraction of solutions from existing projects (ARCH [9], SHELTER [3], RURITAGE [10]), SISTEMA has implemented a Python script (one per solution type per existing database) which automatically fetches the needed information according to a look-up table designed by UNIBO.

Figure 6 shows the final output after all the intermediate outputs (one per project per solution type) have been merged into a unique excel file:

Title*	ID*	Compiler*	Solution domain*	Description*	References*	Image*	Social capital*	Human capital*	Financial capital		capital*		nanci Natural capi	Suilt Hozard* tal*	Other hazard(s) and	Disaster Risk Manage	Scale of implementation	Technological readiness Level	Comments	Source project and code
Write the tale of the implemented solution (Maximum lenght: 200 characters)	Number the solution with the short name of your partner_incremental	Write your name and your neural contact. This will only be used for communications internal	Soloct ALL the solution domains	Write a discription of the mean objective and activities of the solution (what is the solution, what issue is trying to solve, whether it is successfully implemented, how the solution	Add reference to material such as websites, lette to articles, pictures, vieles, etc.	Insert one or more picture representing the solution in the	Soloct ALL the are assets and i prospective dev	capitals that the sol woowerses commercies elegement	ution influence. Ca to the capacity of	petals in Ro communitie	ucanhE u for	Select ALL the key alor evenieus ly selected that clements in RescueME capitals almed as enabl	onts for each capitals the solutions influence are component linked to ing resilience improvem	Soloct ALI Key hauards the related to ruis, RescueAdI	the Write ALL the other he hanards or stressors	Select ALL the Disarter Rick	Solect ALL the scale and generators territorial level involved in the solution (if applicable). Multi-soluction menu	Soloct the level of the development or metarity of the solution and its readiness	Add comments regarding the entered dats (f any)	 Write the project in which (solution have been develop or implemented (ff applicable)
1	number (e.g. CMCC_01)			tropacts capitals and hey olements). [Maximum longht: 1060 characters]								based on coping, adapt capacities of cultural lo menu	ve and transformative reducepse. Multi-selectiv		on that the solution is related to					
systems to become	NBS_25	ibo.it Gemma Garcia- Blanco T	strategy Nature based sol	part of a risk management strategy to reduce risk The Department for Environment, Food, & Rural Affairs will begin a consultation regarding how	https://environment-analyst.com/uk/109018/sus tainable-drainage-to-become-law-for-england	northwest.co.uk/s				Text	Yes	Social value	Green and bls Tanal		l≕soding, Water	Pre-disas er	n National	8) Solution system complete and qualified		
mandatory in UK Guide for good practices for goods management in harbours		Andrés Simón-Moral, andres.simon@tecnalia.c		to implement the new policy, with the The guide offers a series of recommendations and good practices to reduce the potential environmental, social and economical invast	https://www.puertos.es/es-es/calidad Documents /Guia_BP_Graneles_Solidos_Bres.pdf	ostainable, dialnae	141		Yes	Yes	Yes		onom Green and Inffr		run-off, He	art.	National	9) Actual solution system proven in operational environment		One of the main precursors the guide is the HADA project (LIFE02
	NBS_27	andres.simon@tecsalia.c	Adaptive		https://www.bos.es/diario_bos/txt.php?id=BOE- A-2022-22689		Yes	Yes	Yan	Yes	Yes	Social "To value	ariam Green and Infra blue e infrastructu	atructur			National	 Solution system prototype demonstration in operational environment. 		project (Elerzoz
climate change adaptation	cliad_37	Mirisen Aluise mirian aluiss@studio un ibo.it		The extent to which climate change will impact cut society depends on the exposure, vulnerability (which are indeed to the	https://climate-adapt.eos.europa.eu/en/metadata/ adaptation-options/rapacity-building-on-climate -change-adaptation	Lisk	Yes	Yes	Yas			Governan Educatio Na ce n, he Training			Non specif	Post-disat er	Supranational, National, Regional, M Provincial, Local			Climate ADAPT
Early warning systems for 4 vector-borne diseases	-		solution	vector-borne disease (VBD) transmission leading to larger vector populations and increased	ector-borne-diseases		Yes	Yes	No			Ooveman Training, re Educatio n			Biological	r; During diseater	 Local, Provincial, Regional, National 	proven in operational environment		
5			rolution	Europe has experienced several extreme summer heatwaves and continuous new records in terms of extreme temperatures since 2003, which have	adaptation-options heat-health-action-plans		Yes	Yes	No			Demogra Training, phics, Educatio Governari n			cal	r, During disaster	e National, Regional, Provincial, Local	proven in operational environment		Climate ADAPT
connectivity of ecological networks		mirian aluise@stufio.us ibo.it		Ecosystems and biodiversity have long been endangered by numerous factors, such as habitat modification due to changes in land use, habitat	adaptation-options/improve-the-functional-cons. ectivity-of-ecological-networks		No	Yes	Yes		No	Educatio an n ini	een Goven and i blue blue hastru isifiastructu		Non specif	Pre-dicast r	Local, Provincial, Regional, National, Supranational	formulated		Climate ADAPT
Insurance as tick 7 management tool Weather derivatives as tick		mirian aluiseğstudio un ibo.it	business model strategy	Disaster risks and losses are of great concern for society, since they have increased over the last years. Such events are expected to further	adaptation-options insurance-as-risk-manageme nt-tool		Yes	No	No			Governan ce, Demogra			Non specif	Pre-disest		2) Solution concept formulated		Climate ADAPT
8 management tool	_	htersem Alturas miriam ahuise@studio.un ibo.it Gemma Garcia- Blanco	business model strategy	Weather derivatives see financial instruments that can be used by organizations or individuals as part of a risk management strategy to reduce risk. The Department for Environment, Food, & Rural	adaptation options weather derivatives as nisk- management-tool		See.	No	No	No		Governari te Raziel	Green and Tana	al. (11	cal Flooding,	Pre-disest	Local, National National	 Basic principles observed Solution system complete 		Climits ADAP1
systems to become mandatory in UK Guide for good practices for		TECNALIA	solution Adaptive	Affairs will begin a consultation regarding how to implement the new policy, with the	ainable-drainage-to-become-law-for-england				Yes	Yes		Social value v.	blue infractructu onom Green and Infra		Water run off, He	Pre-disard at r	19	and qualified 9) Actual solution system		One of the main precursor
goods management in harbours		andres.simon@tecnalia.c	governance solution	and good practices to reduce the potential environmental, social and economical impact	/Guia_BP_Graneles_Solidos_Bres.pdf https://www.boe.es/diario_boe/bt.php?id=BOE-		Yes	Yes	Yes	Ves		У	blue e infrastructu arium Green and Infra				National	proven in operational environment 7) Solution system prototype		the guide is the HADA project (LIFE02
1		andres.simon@tecnalia.c om		define zones in the cities where a series of measures are to be adopted to decrease pollutarits Europe is facing an increasing risk of water	A-2022-22689 https://climate-adapt.esa.europa.eu/en/metadata/	Link	Yes	Ne	No	lin		ralue Sovemen	blue e inflastructu Agriculture		Droughts.	Pre-dipest		demonstration in operational environment 5) Solution validated in		Climate ADAPT
change adaptation in drought and water	shiel 86	jacob.schlochtendahl@st udio.unibo.it		scarcity and droughts, especially in the	adaptation-options/adaptation-of-drought-and-w ater-conservation-plans		Ve	Ver	Ne	Var		Conserver Training	Gran and		Water Searcity Descelate	c During disaster	1 coul Provincial Panioral National	relevant environment		Climate ADAPT

Figure 6 - RescueME Meta-repository of solutions

More details about the methodology for the extraction of existing solutions will be provided by M24 through a technical report which will be released by UNIBO together with the Metarepository tool itself (D2.1 - RescueME resilience Meta-repository).

Table 3 summarises the technical specifications of the Meta-repository:

SOLUTION	META-REPOSITORY			
ID	TL01_SIST-A			
Type of the solution	Software component			
Solution description	Searchable data base of resilience solutions characterised			
	by their effectivity in improving the resilience of CL and			
	their carbon footprint, including innovative solutions for			
	resilience financing, inclusion of CCSIs, and adaptive			
	governance models.			
WP	WP2			
Task	T2.1 – ST2.1.1			
Responsible	Marco Folegani			
Description				
Functional Description	SIST_META-REP_001 Metadata Management: The Meta-			
	repository provides metadata management compliant with			
	the FAIR principles to help users discover, share, and use			
	the different resilience solutions identified from previous			
	research projects. Metadata management includes the			
	ability to create metadata records, add keywords and tags,			
	and to link the Meta-repository to the ISDSS [TL11_TEC-B].			
Technical Description	Catalogue of solutions from previous research projects to			
	be accessed by the ISDSS in the form of Excel file.			
Input	Contents of previous research projects mostly in the form			
	of Excel file.			
Output	Excel file			
Version	-			
License / Terms of use /	License inherited from the previous research projects.			
Online documentation	The script implemented to automate the solutions			
	extraction from existing projects will be shared by M24 by			
	UNIBO through a technical report.			
Programming Language	Python (format: Jupyter Notebooks and python scripts;			
g	libraries: re, pandas, numpy, csv; main data structures:			
	dictionaries, lists, pandas data frames).			

Usage description					
Frequency of use	On-demand, depending on the ISDSS requests				
Execution time	N/A				
System requirements	N/A				
Interoperability aspects					
Related data models	RescueME ontology built on previous research projects'				
	ontologies.				
Information exchange	N/A				
protocol	,				
Available API	N/A				
Integration aspects					
Installation requirements	Linux / Windows operating systems				
Integration requirements	All the necessary input files				
Software dependencies	For the JN scripts: Jupyter Lab environment and Python				
	are required				
Technical dependencies	For the JN scripts: re, numpy, pandas, itables, os and tqdm				
	libraries;				
Deployment requirements	Input, Output and src folder structure				
Example of existing	None				
integration					
Critical factors for the	None				
integration					
Connection to other tools	ISDSS (TL11_TEC-B), which will group the different				
	solutions into packages and monitoring indicators; ATLAS				
	(TL00_TEC-A), which will work as an entry point for coastal				
	landscapes.				
Other information	All the above features depend on the upper-level modules				
	in the overall RescueME architecture (e.g., the ISDSS				
	module).				
Security aspects					
Security issues to be	N/A				
covered					
Integrated security solution	N/A				
Existing security solution	N/A				
Data management					
Data management Data sharing and access	No issues or limitations				
limitations					

Data interoperability limitations	No proprietary formats
Standards used	FAIR principles

 Table 3 - Technical specifications of the RescueME Meta-repository

2.4 Data Lake

The Data Lake serves as a central repository for storing structured, semi-structured, and unstructured data, including geospatial data generated within the project. Leveraging the experience and lessons learned during the SHELTER project, a new ecosystem has been created: GAIA (Geodata Analytics and Intelligent Architecture), currently under development by the LINKS Foundation. This innovative ecosystem comprises a set of micro-services (among which the Data Lake and the Importer and Mapper), capable of ingesting spatial data and displaying it on a map. RescueMe will be the first project to utilise this advanced ecosystem, further developing and extending its capabilities.

Data originating from the project is documented in the Data Mapping Form under WP1. Due to the data's heterogeneity and volume, traditional relational databases are insufficient for effective management and processing. Instead, a big data storage system is adopted. Apache HDFS, a distributed file system that ensures data reliability, is chosen for its scalability and fault tolerance, making it suitable for large-scale data storage.

SOLUTION	DATA LAKE		
ID	TL02_LINKS-A		
Type of the solution	Software, platform		
Solution description	Data Lake offers a web-based platform (exploitable through API) to gather all the geospatial data generated within the project. INSPIRE compliant metadata [7] and web-based APIs will be used to guarantee interoperability with existing open-source solutions and GEO data repositories.		
WP	WP3		
Task	T3.2 - ST3.2.2		
Responsible	Federico Oldani (LINKS)		
Description			
Functional Description	LINKS_DATALAKE_001 Data Ingestion: the Data Lake should have the ability to ingest data from various sources such as satellite imagery, geospatial files and other files.		

	LINKS_DATALAKE_002 Metadata Management: the Data
	Lake provides metadata management compliant with
	INSPIRE Metadata Directive 2007/2/EC [7] to help users
	discover, share, and use geospatial data. Metadata
	management includes the ability to create metadata
	records, add keywords and tags, and define data access
	policies.
	LINKS_DATALAKE_003 Data Storage: the Data Lake
	provides a scalable and secure environment for storing
	geospatial data. The Data Lake provides various storage
	options such as link to external resources, object storage
	and file storage, and supports different types of geospatial
	data such as shapefile, netCDF, geoTIFF, geoJSON.
	LINKS_DATALAKE_004 Data Retrieval: the Data Lake
	provides a graphical interface that allows users to retrieve
	geospatial data based on their specific needs. This interface
	includes APIs, SQL, and other querying tools that allow
	users to perform spatial queries and retrieve data in
	different formats.
	LINKS_DATALAKE_005 Data Sharing: the Data Lake
	provides features that allow users to share geospatial data
	with other users or organisations. This may include data
	access policies that control who can access the data, and
	data sharing mechanisms such as APIs or file sharing.
	LINKS_DATALAKE_006 Data Security: the Data Lake
	provides robust security features to ensure that geospatial
	data is protected from unauthorised access. The Data Lake
	includes access control mechanisms, and other security
	features to safeguard data from potential breaches.
Technical Description	Data Ingestion: Data ingestion can be achieved through
	graphical interface and APIs. The solution is based on an
	open-source project that allows to develop plugins and
	extensions to customise and extend data ingestion
	capabilities to meet their specific needs.
	Metadata Management: Metadata model is customised to
	be compliant with Metadata Directive 2007/2/EC, but it can
	be further extended to describe geospatial data using other metadata standards. The Data Lake search API can be used
	to search for and discover geospatial data based on
	metadata attributes.

especially to geospatial data such as geoJSON, shapefile, geoTIFF, netCDF. All the resources must be coupled with metadata compliant with INSPIRE Metadata Directive 2007/2/EC.OutputThe output of the solution is represented by the access to the raw data and its metadata.VersionThe current Data Lake solution is based on: 		1			
geoTIFF, netCDF. All the resources must be coupled with metadata compliant with INSPIRE Metadata Directive 2007/2/EC.OutputThe output of the solution is represented by the access to the raw data and its metadata.VersionThe current Data Lake solution is based on: • CKAN v2.10 • Azure Blob Storage • FusionAuth 1.17.3License / Terms of use / SLACKAN v2.9.3 (open source) • FusionAuth (freeware)Online documentationCKAN [11] • Azure Blob Storage [12] • FusionAuth [13]Programming LanguagePython 3	Input	based storage system such as local or distributed file systems, object storage such as Amazon S3 or Azure Blob Storage, and metadata in spatial databases (PostgreSQL). Data Retrieval : the Data Lake's search API allows users to search for and retrieve geospatial data based on metadata attributes. The Data Lake's API can be used to retrieve geospatial data in various formats such as GeoJSON, NetCDF, Shapefile, GeoTIFF. Data Sharing : the Data Lake provides access control mechanisms that allow users to share geospatial data with other users or organizations. The Data Lake's access control is based on OAuth2 authorization and authentication system, enforcing permissions on specific datasets or resources, and monitor data access and usage through audit trails. Data Security : the Data Lake provides robust security features to protect geospatial data from potential breaches. The Data Lake's security features include access control mechanisms and authentication mechanisms (OAuth2). The Data Lake ingests any type of data. It will be built			
2007/2/EC.OutputThe output of the solution is represented by the access to the raw data and its metadata.VersionThe current Data Lake solution is based on: • CKAN v2.10 • Azure Blob Storage • FusionAuth 1.17.3License / Terms of use / SLACKAN v2.9.3 (open source) • Azure Blob Storage (pay for use) • FusionAuth (freeware)Online documentationCKAN [11] • Azure Blob Storage [12] • FusionAuth [13]Programming LanguagePython 3		geoTIFF, netCDF. All the resources must be coupled with			
the raw data and its metadata.VersionThe current Data Lake solution is based on: 					
 CKAN v2.10 Azure Blob Storage FusionAuth 1.17.3 License / Terms of use / CKAN v2.9.3 (open source) Azure Blob Storage (pay for use) FusionAuth (freeware) Online documentation CKAN [11] Azure Blob Storage [12] FusionAuth [13] Programming Language Python 3 	Output				
SLA • Azure Blob Storage (pay for use) • FusionAuth (freeware) Online documentation • CKAN [11] • Azure Blob Storage [12] • FusionAuth [13] Programming Language	Version	CKAN v2.10Azure Blob Storage			
Azure Blob Storage [12] FusionAuth [13] Programming Language Python 3	License / Terms of use / SLA	Azure Blob Storage (pay for use)			
Programming Language Python 3	Online documentation	Azure Blob Storage [12]			
Usage description	Programming Language	Python 3			
	Usage description				

Frequency of use	Every time there is the need of storing a file or geospatial file generated within the project.					
Execution time	Always active					
System requirements	Intel(R) Xeon(R) Platinum 8171M CPU @ 2.60GHz					
	16GiB System memory					
	30GB storage					
Interoperability aspects						
Related data models	INSPIRE Metadata Directive 2007/2/EC					
Information exchange	-					
protocol						
Available API	https://docs.ckan.org/en/2.10/api/index.html					
Integration aspects						
Installation requirements	Deployment of a Docker container					
	Blob storage access					
	FusionAuth					
Integration requirements	N/A					
Software dependencies	N/A					
Technical dependencies	N/A					
Deployment requirements	N/A					
Example of existing	The SHELTER project had successfully integrated the					
integration	solution.					
Critical factors for the	Train people to use the Data Lake.					
integration						
Connection to other tools	Importer & mapper [TL03_LINKS-B], EO-based mapping					
	[TL08_LINKS-F]					
Security aspects						
Security issues to be	User authentication					
covered	Authorization system					
Integrated security	FusionAuth offers OAuth2 authorization and authentication					
solution	system.					
Existing security solution	N/A					
Data management						
Data sharing and access	N/A					
limitations						
Data interoperability	None					
limitations						
Standards used	FAIR [1], GEOSS [14], INSPIRE Metadata [7], ISO 19115 [15]					

Table 4 – Technical specifications of the RescueME Data Lake

Release at M18

The Data Lake comprises a Big Data storage for raw data and a management component, here termed as Catalog, orchestrating data ingestion and retrieval.

The high-level architecture of the Data Lake is shown in Figure 7.

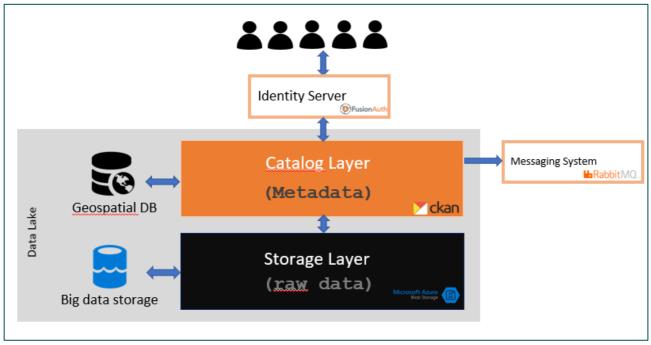


Figure 7 - RescueME Data Lake architecture

Data Storage

The Data Lake integrates Microsoft Azure Blob Storage for big data storage. This service facilitates the storage of heterogeneous data and aligns with the project's analytics requirements. Azure Blob Storage, an extension of HDFS APIs, ensures scalability and supports long-term data retention.

Data Catalog

CKAN [11] is selected as the data management system due to its flexibility and ability to handle INSPIRE-compliant metadata [7] and geospatial data. Through plugins and enhancements, CKAN provides a user-friendly interface for exploring, searching, and uploading resources to the Data Lake. It interacts with other project components, such as the Authorization and Authentication System and Messaging Bus. In the RescueMe release the CKAN component has been upgraded to its latest version (2.10) that brought major changes [16], leading to the upgrade and in some cases the new development of its plugins. The core functionality of CKAN (in Figure 8 the internal architecture) has been extended through the integration of various plugins, some of which were already available within the community, while others were developed by LINKS Foundation (Table 5).

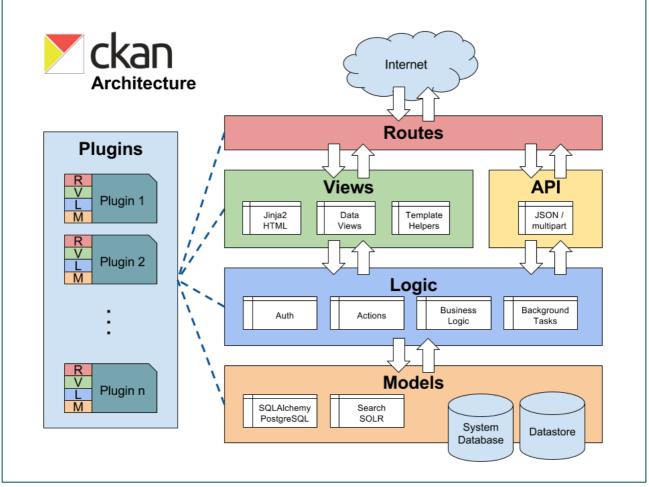


Figure 8 - CKAN internal architecture

Plugin name	Description	Source link	
spatial	enables the addition of spatial extents to metadata and facilitating spatial data querying	https://github.com/ckan/ckanext- spatial	
geoview	allows users to preview maps of data stored in the Big Data Storage.	https://github.com/ckan/ckanext- geoview	
datesearch	efficient data retrieval based on specified datetime intervals	Modified version of https://github.com/geosolutions- it/ckanext-datesearch	

oauth2	interfaces with FusionAuth for user authentication	Forked from: https://github.com/conwetlab/ckanext- oauth2 and internally developed to be compatible with the latest version of CKAN
cloudstorage	Integration with Microsoft Azure's Big Data Storage. ensures direct upload of data to blob storage and maps data URLs into the database for easy retrieval by users.	https://github.com/TkTech/ckanext- cloudstorage
scheming	Customization of metadata fields compliant with INSPIRE standards	https://github.com/ckan/ckanext- scheming
notify	send notifications to a messaging system upon data storage modifications (upload, modification, or deletion).	Internally developed

Table 5 - CKAN plugins

Geospatial Database

PostgreSQL 12 with PostGIS 3.4.2 extension is chosen to manage spatial data efficiently. This solution supports spatial queries and integrates seamlessly with CKAN, enabling the storage of metadata with spatial information.

Graphic User Interface

The Data Lake release is deployed at:

https://datalake.gaia-project.cloud/,

the access is restricted to authenticated user only. Any access rule modification will be discussed. Figure 9, the initial page of the Data Lake ready to display all the datasets uploaded.

					Log in	Register	
Links	Datasets	Organizations	Groups	About	Search	Q	FDT
PASSION FOR INNOVATION							
A / Organizations / RESCU	EME						
	About						
	Search datasets					۹	
DEO	No datasets fou	Ind		Order by:	Relevance	~	
RES							
CUE							
ME							
RESILIENT CULTURAL LANDSCAPES RESCUEME							

Figure 9 - RescueME Data Lake Graphic User Interface

2.5 Importer & Mapper

This module is composed by two main interconnected functional elements: the Mapper, a map server exposing and giving access to the geospatial data generated within the project by means of Open Geospatial Consortium (OGC) services [17] such as WMS, WMTS, WFS or WCS, and the Importer, a routine that after the reception of a notification signalling a change in the Data Lake, performs the corresponding edit to the contents available through the Mapper, fetching the relevant data and creating, updating or deleting the map layers of interest. The importer also generates a list of available layers available through API, which must be provided in a convenient format to allow their subsequent request.

Figure 10 shows the inner architecture of the module:

		Messaging System
Data notificatio Data Lake message_M=1234 app_M=26 wer_M=1004 ISON power_M=1004 metable.ct work creation and work creation and work creation and work creation and work creation and creations operative own/ICON powers with creations of the creation of		Status notification from Importer and Mapper (message_M-3433 (message_M-3433 (message_M-3433) (message_M-34
		Importer&Mapper
Raster netCDF geoTIFF	ver Vector geoJSON Shapefile	Publish layers Mapper Save geospatial info in the DB
	Seospatial table	Geospatial DB Geospatial table Webserver

Figure 10 - RescueME Importer & Mapper architecture

The Importer is a routine waiting for change notification from the Data Lake through a message broker. Upon a change event (upload, edit, deletion) relative to a raw geospatial file resource within the Data Lake, the Importer expects a notification from the message broker with the following format:

```
{
    "metadata_id": Metadata GUID,
    "id": Resource GUID,
    "datatype_id": File data type (5 digits integer number),
    "type": Change event type (create, update, delete),
    "creation_date": Creation ISO timestamp,
    "start_date": Start of the time range covered by the file, ISO
timestamp,
    "end_date": End of the time range covered by the file, ISO timestamp,
    "geometry": Coordinates of the area covered by the file, GeoJSON format,
    "request_code": Code of the request linked to file change the event,
    "url": URL pointing to the file
}
```

The geospatial file linked to the change notification is fetched from the URL and loaded as one or more layers in the Mapper, with support for both vectorial (GeoJSON) and raster (GeoTIFF, NetCDF) file formats. Finally, the Importer sends a notification status on the message broker, notifying the success or failure of the layer importing. The Mapper is the server exposing the map layers via OGC services. In addition to these two elements, a

support database provides persistent storage for both, holding the resource list, that is the set of available layers and relative metadata, and storing some of the layers themselves. The used standard vector data formats are GeoJSON and shapefile and the two commonly used raster formats are GeoTIFF and netCDF. The data collected and processed by SAFERS will exploit these file formats. As Output, for every layer attempted to be imported, the Importer produces an outcome notification to the message broker with the following format, with a routing key referencing the request code:

Finally, the API server allows to query and access the information regarding the available layers. In particular, the GET request /layers allows to retrieve the list of layers accessible from the Mapper grouped by their datatype, and including their metadata, creation date, and list of referenced timestamps in the layer (temporal dimension). The request parameters allow filtering the results by originating request code, datatype id, time interval or geographical area. Figure 11 shows an example of a layer representing the temperature:

Figure 11 - Example of a layer imported by the RescueME Importer & Mapper

Table 6 summarises the technical specifications of the Importer & Mapper:

SOLUTION	IMPORTER & MAPPER
ID	TL03_LINKS-B
Type of the solution	Software component
Solution description	The Importer & Mapper is a software component that automatically imports the geospatial data from the Data Lake and publishes the data as a layer on a map server. The map server offers OGC services to render the data as tiles on the
	frontend (not included). The importer also offers a set of APIs
	to query the database of available layers.
WP	WP3
Task	T3.2 - ST3.2.2
Responsible	Federico Oldani (LINKS)
Description	
Functional Description	 LINKS_IAM_001 Import Geospatial Data: The Importer & Mapper software component must automatically import geospatial data from the Data Lake. This includes importing data in different formats such as Shapefile, GeoJSON, and GeoTIFF. LINKS_IAM_002 Publish Data as a Layer: The Importer & Mapper software component must publish the imported geospatial data as a layer on the map server. The layer must

	be identifiable by a unique name and must include the
	relevant metadata associated with the layer.
	LINKS_IAM_003 Offer OGC Services: The map server must
	offer OGC services such as WMS, WMTS, and WFS. The
	software component must interact with the map server to
	enable these services.
	LINKS_IAM_004 Provide API for Querying Layers: The
	Importer & Mapper software component must offer a set of
	APIs to query the database of available layers. The APIs allow
	users to search for layers based on different criteria such as
	name, metadata, or geographic extent.
	LINKS_IAM_005 Layer Styling: The software component must
	allow users to apply a style on the layer.
	LINKS_IAM_006 Enable User Authentication: The software
	component must enable user authentication to restrict access
	to the API and the map server. Users should be able to
	authenticate using different mechanisms such as username
	and password or OAuth2.
	LINKS_IAM_007 Implement messaging bus: The software
	component must implement a messaging bus to share the
	successful import and publish of a new layer.
Technical Description	Import Geospatial Data: The Importer & Mapper software
	component listen to messages on the messaging bus for every
	new upload on the Data Lake. Then, it retrieves geospatial
	data from the using a CKAN API.
	Publish Data as a Layer: The software component sends save
	metadata on an internal Geospatial DB and publish to the
	GeoServer the imported data as a layer. The layer includes
	information such as the name, the datatype ID, and the layer
	style.
	Offer OGC Services: GeoServer offers OGC services such as
	WMS, WMTS, and WFS to render the data as tiles on the
	frontend. The software component interacts with GeoServer
	to enable these services and configure the desired settings.
	Provide API for Querying Layers: The software component
	exposes a RESTful API that allows users to query the database
	of available layers. The API uses GeoServer's REST API to
	retrieve the necessary information and returns the results in a
	user-friendly format.

	Enable User Authentication: The software component can be
	configured to enable user authentication using GeoServer's
	built-in security mechanisms.
	component provides documentation and support to users. The
	documentation describes how to use the software
	component.
Input	Geospatial files coupled with INSPIRE metadata
Output	Map Tiles through OGC services
Version	The solution is based on:
	 Importer (v2.0 developed by LINKS)
	Mapper (GeoServer 2.23)
License / Terms of use / SLA	Open source
Online documentation	https://docs.geoserver.org/
Programming Language	Importer: Python 3
	GeoServer: Java
Usage description	
Frequency of use	Every time a new geospatial file is uploaded on the Data
	Lake.
Execution time	Always active (real-time)
System requirements	Intel(R) Xeon(R) Platinum 8171M CPU @ 2.60GHz
	16GiB System memory
	> 100GB storage
Interoperability aspects	
Related data models	INSPIRE Metadata Directive 2007/2/EC
Information exchange protocol	N/A
Available API	https://docs.geoserver.org/stable/
	en/user/rest/index.html
Integration aspects	
Installation requirements	Deployment of a Docker container
	Messaging bus access
Integration requirements	N/A
Software dependencies	N/A
Technical dependencies	Messaging bus
	Data Lake
Deployment requirements	N/A
Example of existing	
integration	SHELTER project successfully integrated the solution.

Connection to other tools Data Lake [TL02_LINKS-A] Security aspects User authentication Security issues to be covered User authentication Integrated security solution Basic authentication with username and password Solution N/A Data management N/A Data sharing and access N/A	Critical factors for the integration	N/A
Security issues to be covered User authentication Integrated security solution Basic authentication with username and password Solution N/A Data management N/A Data sharing and access limitations N/A	Connection to other tools	Data Lake [TL02_LINKS-A]
covered Integrated security Integrated security Basic authentication with username and password solution Basic authentication with username and password Existing security solution N/A Data management N/A Limitations N/A	Security aspects	
solution N/A Data management N/A Limitations N/A	•	User authentication
Data management Data sharing and access N/A limitations	0	Basic authentication with username and password
Data sharing and access N/A limitations	Existing security solution	N/A
limitations	Data management	
	-	N/A
limitations	Data interoperability limitations	None
Standards used GEOSS [14], INSPIRE Metadata [7], ISO 19115 [15], OGC [17]	Standards used	GEOSS [14], INSPIRE Metadata [7], ISO 19115 [15], OGC [17]

Table 6 - Technical specifications of the RescueME Importer & Mapper

2.6 Web application / Frontend

End-user interaction with RescueMe will be through a web-based dashboard. This dashboard will enable decision makers and visitors to effectively visualise all available project data and maps generated within the project. The dashboard will communicate directly with a backend module: it will act as a proxy and will manage the connection between the frontend, the Chatbot, the Social Media module and the Identity server.

The Web-based Dashboard will provide a map view presenting location pins of different data categories where each data point can be expanded to display more detailed information. Additionally, notifications of relevant new data points will accumulate in a different section of the dashboard.

To access the platform, the users will need to provide valid credentials.

Table 7 summarises the technical specifications of the Web application / Frontend:

SOLUTION	WEB APPLICATION
ID	TL04_LINKS-C
Type of the solution	Software, platform
Solution description	The web application shows the output coming from the
	Chatbot, the Social Media module and the Importer & Mapper
	module.
WP	WP3
Task	T3.2 - ST3.2.2
Responsible	Luca Bruno – luca.bruno@linksfoundation.com (LINKS)

Xileny Seijas Portocarrero -
xileny.seijasp@linksfoundation.com (LINKS)
LINKS_WEBAPP_001 displays the information coming from the Chatbot and allows users to filter the output with time and space filters. LINKS_WEBAPP_002 displays the information coming from the Social Media module and allows users to filter the output
with time and space filters. LINKS_WEBAPP_003 allows the management of users as back-office functionalities. LINKS_WEBAPP_004 summarises in a dashboard the ongoing situation, by displaying data through charts. LINKS_WEBAPP_005 allows the user to create a custom map request for the Importer & Mapper module.
The platform will be implemented as a Single Page Application (SPA) based on ReactJs library. The solution will contain Mapbox-gl library for the management of map view. The authentication procedure will be implemented with a redirection to the form provided by FusionAuth module. For an initial version, the web application will be available in English and Italian; if required, all the languages related to the project will be made available.
Input data is in JSON format
There is no data for other modules, but the input information will be visualised with charts on a Dashboard or pins and layers on a map.
Version of the solution: V2.0.0 ReactJs version: 17
Open source
A link will be provided when available
Typescript
The solution will stay up and running for all the duration of the project.
Real-time
CPU with 2.4 GHz 2GB memory No GPU needed

Interoperability aspects	
Related data models	Chatbot and Social Media module entities
	Geodetic system: EPGS:4326
	Date time in ISO 8601: YYYY-MM-
	DDTHH:mm:ssZ
Information exchange	JSON, REST APIs
protocol	
Available API	A link will be provided when available.
Integration aspects	
Installation requirements	Virtual machine
	Project domain to be linked to the web application.
Integration requirements	N/A
Software dependencies	N/A
Technical dependencies	N/A
Deployment requirements	N/A
Example of existing	The starting solution is a part of SHELTER project [3]
integration	
Critical factors for the integration	N/A
Connection to other tools	Mobile Chatbot [TL09_LINKS-G] , Social media data engine
	[TL10_LINKS-H], Importer & Mapper [TL03_LINKS-B]
Security aspects	
Security issues to be covered	Authentication based on username/email and password
Integrated security solution	Integration with Identity Server, that is FusionAuth.
Existing security solution	N/A
Data management	
Data sharing and access limitations	N/A
Data interoperability limitations	N/A
Standards used	N/A

Table 7 - Technical specifications of the RescueME Web application / Frontend

2.7 Geospatial Data Intelligent Platform

The Geospatial Data Intelligent Platform (GDIP) will act as a geospatial Gateway for data collection, processing, analysis and geospatial visualization of the data used in the project and data provided by external models, including the tools delivered in Task 3.2 (Geospatial data management and data visualization solutions) and eventually existing systems available within the case studies. Specifically, the Geospatial platform will establish a connection with the Data Lake, various open data sources and any R-Labscape local sensors that may be available. To facilitate the comprehension of the user interface and the user experience, mock-ups have been prepared to thoroughly establish and communicate the different steps of the workflow process that will be developed (example in Figure 12).

Figure 12 - RescueME Geospatial data intelligent platform mock-up

As development is only just starting at the time of writing, it is possible that some technical information may slightly change.

Table 8 summarises the technical specifications of the Geospatial data intelligent platform:

SOLUTION	GEOSPATIAL DATA INTELLIGENT PLATFORM
ID	TL05_DRAXIS-A
Type of the solution	Platform
Solution description	A geospatial gateway for data collection, processing, analysis, and geospatial visualization of the data used in the project.
WP	WP3
Task	T3.2 - ST3.2.3
Responsible	DRAXIS
Description	
Functional Description	DRAXIS_GDIP_001 Data collection DRAXIS_GDIP_002 Data processing DRAXIS_GDIP_003 Data analysis DRAXIS_GDIP_004 Data visualization DRAXIS_GDIP_005 supports the ingestion and visualization of data provided by external models and of existing systems available within the case studies. DRAXIS_GDIP_006 User interface
Technical Description	An end to end, web-based geospatial platform application that integrates spatial data with analytical tools and models, including Internet of Things (IoT) and imagery, to support decision-making processes. The system is designed to assist decision-makers in understanding and comparing spatial (and non-spatial) data and related patterns, to help them make informed decisions based on real-time and historical data. The system primarily incorporates data from a variety of sources, such as from the LINKS Data Lake, which collects the various disparate datasets from the project that is not already published openly, together with open data of interest to the R-Labscapes, such as data from the Copernicus Programme [18]. Key feature of the geospatial platform is the use of dashboard functionality that allows decision-makers to access and visualise real-time data in a user-friendly interface that is tailored to their specific needs. The dashboard can include interactive maps, charts, graphs, and

	other visualizations that enable decision-makers to quickly
	identify trends, patterns, and anomalies in the data.
Input	Data from RescueME via the Data Lake (LINKS) and
mpac	open data
Output	Maps
output	 Detailed information on areas of interest within the
	R-Labscape regions
	 Configurable dashboards with aggregated data for
	sensors
	Data visualizations
	 Possibility of integration with weather forecasting
	platforms
Version	1.3.14 existing version
	3.0.0 target version
License / Terms of use /	The GDIP application falls under the GNU General Public
SLA	License v3 (GPL-3) [19]. The current license may change in
	future versions.
Online documentation	No online documentation is available
Programming Language	Python
	JavaScript
	• Java
Usage description	
Frequency of use	This software is only used in pilots and has not been
	released yet. In case it is released in the upcoming future,
	a different installation than the one in the project will be
	used.
Execution time	Real time/near real time
System requirements	8 Cores CPU
	• 16 GB RAM
	SSD (space according to project needs)
Interoperability aspects	
Related data models	Data in GDIP exist in three forms:
	as JSON message in Kafka (semi-structured)
	as measurement rows in PostgreSQL (structured)
	as data grids in NetCDF format (structured)
Information exchange	RESTful API (over HTTP)
protocol	OGC WFS & WMS [17]
Available API	REST API under development
Integration aspects	

Installation requirements	GDIP is a fully "Dockerised" application. To install it, a Linux
	based system with Docker & Docker Compose is required
	(Docker version should be at least 20.10.7).
	The installation process is the following:
	Collection of the required application Docker images
	Preparation of Docker Compose files
	Preparation of configuration files
Integration requirements	To integrate GDIP with another application, the latter should
	be able to communicate through HTTP and support of
	OAuth2 and OIDC specifications.
Software dependencies	• Django
	Django Rest Framework
	• GDAL
	VueJS
	Vuetify
	Axios
	OpenLayers
	ApexCharts
Technical dependencies	Linux Server
	Let's Encrypt Service
	Docker / Docker Compose
Deployment requirements	For the deployment of GDIP an extra stack of Docker-based
	services is required. This stack consists of the following
	services:
	 nginx-proxy - A reverse HTTPS proxy
	 letsencrypt-nginx-proxy-companion - An
	accompanying service that manages the whole
	lifecycle of HTTPS certificates for the GDIP services
	This stack will function as the entry point to the GDIP
	application from the internet.
Example of existing	There have been various integrations of GDIP and other
integration	systems (mainly APIs from other applications), e.g.:
	WeatherXM API
	TomTom Traffic API
	OpenAQ API
	Foobot API
	DRAXIS Weather API
	SenseOne Database
Critical factors for the	Sizing of the integrated data
integration	Performance of the application

Connection to other tools	Data Lake [TL02_LINKS-A]
Security aspects	
Security issues to be	Currently GDIP resources are protected from public access,
covered	but everything is available to any logged-in user.
Integrated security	Keycloak Authorization Server
solution	
Existing security solution	No other existing security solutions
Data management	
Data sharing and access	No restrictions foreseen
limitations	
Data interoperability	No restrictions foreseen
limitations	
Standards used	OGC WMS and WFS [17]

Table 8 - Technical specifications of the RescueME Geospatial data intelligent platform

2.8 Generative Al

This tool's outcome will be a machine learning model that generates artworks representing R-Labscapes (see Figure 13 for some examples). The generation will take as input the users' emotions collected from the Social Media module and/or from the feedback collected from the AR Application users, and from the weather data of every R-Labscape (see Figure 14). The artworks will be made accessible for the AR Application to be shown inside the app.

Figure 13 – Examples of artworks generated by the RescueME Generative AI tool

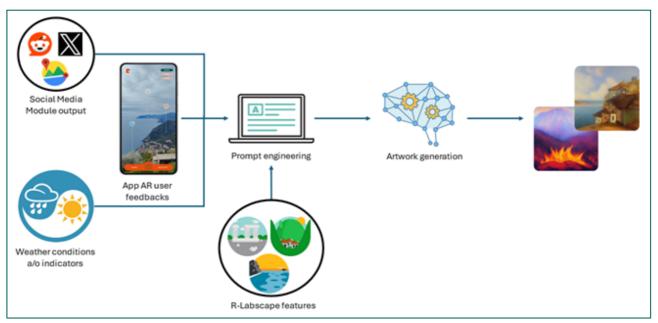


Figure 14 - Schema representing the flow of artworks generation with the RescueME Generative AI tool

SOLUTION	SALLY
ID	TL06_LINKS-D
Type of the solution	Software component running on LINKS premises, providing images to be shown inside the AR Application.
Solution description	A machine learning model will be trained to generate artworks representing R-Labscapes based on the emotions/feedback collected from the Social Media or AR Application users and local weather data.
WP	WP3
Task	T3.2 - ST3.2.4
Responsible	Angelica Urbanelli angelica.urbanelli@linksfoundation.com
Description	
Functional Description	LINKS_SALLY_001 generates images for each R-Labscapes based on sentiment collected from social media feed/ AR Application feedback/ weather data. LINKS_SALLY_002 accesses images generated for each R- Labscape.
Technical Description	The solution is based on the State of the Art of computer vision deep learning models for the task of generating

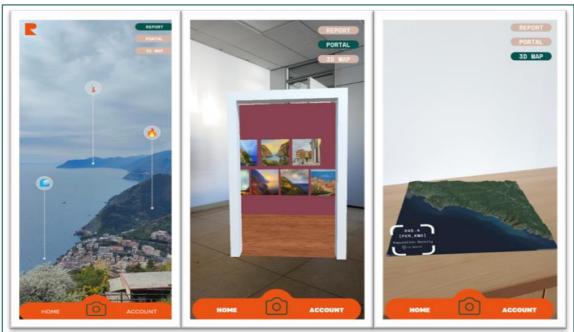
Table 9 summarises the technical specifications of the Generative AI tool:

Γ	
	images. The models will be trained on images of the R- Labscapes. Those images will be collected from the web. Depending on the desired usage of those images, the models' outputs can be loaded in a shared database accessible from the AR Application. Otherwise, they could be made available through REST APIs. Images will be generated by the models based on sentiment detected from social media feeds, as well as feedback from users using App AR and possibly indicators related to weather conditions or other local indicators.
Input	Emotion collected from social media feed, extracted by the
	social media module, users feedback provided by the App
Output	AR, weather conditions/indicators. Image generated for the specific R-Labscape.
Version	
License / Terms of use /	TBD
SLA	
Online documentation	N/A (it will be made available if needed)
Programming Language	Python
Usage description	
	This solution will be used to generate images for the R-
Usage description	
Usage description	This solution will be used to generate images for the R-
Usage description	This solution will be used to generate images for the R- Labscapes at fixed time intervals, for example, every day or once a week. The time interval can be decided by the R-
Usage description Frequency of use	This solution will be used to generate images for the R- Labscapes at fixed time intervals, for example, every day or once a week. The time interval can be decided by the R- Labscapes.
Usage description Frequency of use Execution time	This solution will be used to generate images for the R- Labscapes at fixed time intervals, for example, every day or once a week. The time interval can be decided by the R- Labscapes. Not needed, the tool will be used offline.
Usage description Frequency of use Execution time	This solution will be used to generate images for the R- Labscapes at fixed time intervals, for example, every day or once a week. The time interval can be decided by the R- Labscapes. Not needed, the tool will be used offline. RAM: 8GB
Usage description Frequency of use Execution time	This solution will be used to generate images for the R- Labscapes at fixed time intervals, for example, every day or once a week. The time interval can be decided by the R- Labscapes. Not needed, the tool will be used offline. RAM: 8GB GPU: 12GB minimum
Usage description Frequency of use Execution time System requirements	This solution will be used to generate images for the R- Labscapes at fixed time intervals, for example, every day or once a week. The time interval can be decided by the R- Labscapes. Not needed, the tool will be used offline. RAM: 8GB GPU: 12GB minimum
Usage description Frequency of use Execution time System requirements Interoperability aspects	This solution will be used to generate images for the R- Labscapes at fixed time intervals, for example, every day or once a week. The time interval can be decided by the R- Labscapes. Not needed, the tool will be used offline. RAM: 8GB GPU: 12GB minimum Could change when developing the tool
Usage description Frequency of use Execution time System requirements Interoperability aspects Related data models Information exchange protocol	This solution will be used to generate images for the R- Labscapes at fixed time intervals, for example, every day or once a week. The time interval can be decided by the R- Labscapes. Not needed, the tool will be used offline. RAM: 8GB GPU: 12GB minimum Could change when developing the tool
Usage description Frequency of use Execution time System requirements Interoperability aspects Related data models Information exchange	This solution will be used to generate images for the R- Labscapes at fixed time intervals, for example, every day or once a week. The time interval can be decided by the R- Labscapes. Not needed, the tool will be used offline. RAM: 8GB GPU: 12GB minimum Could change when developing the tool
Usage description Frequency of use Execution time System requirements Interoperability aspects Related data models Information exchange protocol	This solution will be used to generate images for the R- Labscapes at fixed time intervals, for example, every day or once a week. The time interval can be decided by the R- Labscapes. Not needed, the tool will be used offline. RAM: 8GB GPU: 12GB minimum Could change when developing the tool
Usage descriptionFrequency of useExecution timeSystem requirementsInteroperability aspectsRelated data modelsInformation exchangeprotocolAvailable API	This solution will be used to generate images for the R- Labscapes at fixed time intervals, for example, every day or once a week. The time interval can be decided by the R- Labscapes. Not needed, the tool will be used offline. RAM: 8GB GPU: 12GB minimum Could change when developing the tool
Usage description Frequency of use Execution time System requirements Interoperability aspects Related data models Information exchange protocol Available API Integration aspects	This solution will be used to generate images for the R- Labscapes at fixed time intervals, for example, every day or once a week. The time interval can be decided by the R- Labscapes. Not needed, the tool will be used offline. RAM: 8GB GPU: 12GB minimum Could change when developing the tool N/A JSON Will be provided when available.
Usage descriptionFrequency of useExecution timeSystem requirementsInteroperability aspectsRelated data modelsInformation exchangeprotocolAvailable APIIntegration aspectsInstallation requirements	This solution will be used to generate images for the R- Labscapes at fixed time intervals, for example, every day or once a week. The time interval can be decided by the R- Labscapes. Not needed, the tool will be used offline. RAM: 8GB GPU: 12GB minimum Could change when developing the tool N/A JSON Will be provided when available. No specific requirements since it runs on LINKS premises.

Technical dependencies	Shared database to insert the generated images to be accessed from the AR-Interface.
Deployment requirements	The needed amount of storage depends on the desired
	generation frequency.
Example of existing	N/A
integration	
Critical factors for the	No critical factors.
integration	
Connection to other tools	AR-Interface [TL07_LINKS-E], Social Media Module
	[TL10_LINKS-H]
Security aspects	
Security issues to be	No security issues
covered	
Integrated security	Not needed
solution	
Existing security solution	N/A
Data management	
Data sharing and access	Generated images are shared with Creative Common
limitations	licences.
Data interoperability	No proprietary formats are used.
limitations	
Standards used	PNG

Table 9 - Technical specifications of the RescueME Generative AI tool

2.9 AR Mobile Application


The Augmented Reality-based interface is a tool developed for mobile devices aiming to raise awareness among citizens about climate change and its impacts on a local scale. The output becomes, in this way, an interactive information tool, in which the user can learn about a problem and tackle it in the field, becoming resilient.

The technology used is Augmented Reality (AR), which enables users to have an enhanced version of the real world just using an everyday instrument, the mobile phone. AR adds digital data to reality, anchoring them to the 3D space when a specific triggering event happens. These events could be a scan of QR Code or of static image targets through image recognition algorithms, a specific target location retrieved from the information coming from the device GPS, as well as the detection of planes and of 3D Objects. To integrate AR features, the cross-platform game development platform unity has been chosen because it offers a wide range of tools for designing, developing and distributing interactive 3D contents.

The AR Mobile Application is developed to give an easy and gamified way to visualise data and the following key features will be integrated:

- The visualization of paintings coming from generative AI algorithms, using for example AR artwork galleries (Figure 13).
- The visualization of information coming from Chatbot reports located at a certain distance from the user's location.
- The visualization of 3D maps with some territorial data, directly on a plane surface as Figure 15 shows.

• The visualization of data coming from social media posts

Figure 15 - Prototypes of RescueME AR visualization of Chatbot reports, Generative AI paintings and 3D maps

An authentication system is included, and it authorises the access for the user to the tool homepage, where every feature of the application can be found. The most important part is the AR Camera section, where all key features will be visualised accordingly using the potential of AR Technology. The use of AR is intended to support both an on-site and an off-site experience, to give direct access to data also when access to the site is not possible. In the on-site visualization, users have the possibility to view chatbot reports, social media outputs and territorial data in three different layers, to get more information about the geo-localised CL and about the surrounding places.

Table 10 summarises the technical specifications of the AI mobile application:

SOLUTION	AR MOBILE APPLICATION
ID	TL07_LINKS-E
Type of the solution	Software component
Solution description	The Augmented Reality-based interface will produce on-site
	visualization of territorial data, with the aim to support the
	communication of resilience strategies to citizens.
WP	WP3
Task	T3.2 - ST3.2.4
Responsible	Marina Nadalin
	marina.nadalin@linksfoundation.com (LINKS)
Description	
Functional Description	LINKS_AR-APP_001 This application will use AR technologies to visualise paintings coming from generative AI algorithms.
	LINKS_AR-APP_002 This application will use AR technologies to visualise and represent information coming from Chatbot reports, such as geospatial data, disaster report location, disaster description.
	LINKS_AR-APP_003 This application will use AR technologies to visualise satellite maps.
	LINKS_AR-APP_004 This application will use AR technologies to visualise and represent information coming from social media posts.
Technical Description	 Information will be triggered, visualised and oriented according to user location. Inputs could be accessible using different types of triggering events: QR code GPS coordinates Static image targets (through image recognition
	 Static image targets (through image recognition algorithms) Plane detection Inputs will be anchored in the 3D space using the metadata coupled with the visualised information and the user
	location (GPS).
Input	Inputs here are data coming from Chatbot, Social Media, territorial data, satellite maps and generative AI algorithms.
Output	Mobile Application

Version	0
License / Terms of use /	N/A
SLA	
Online documentation	A link to user manual will be provided if needed.
Programming Language	C#
Usage description	
Frequency of use	The solution will be available every time the user wants to
	use it.
Execution time	Real time
System requirements	The preferred target device should have an Android System
	(running Android 7.0).
	The mobile device needed should have access to internet
	connection and GPS connectivity to ensure on-site
	visualization. Moreover, the device should support Google
	Play Services for AR to enable augmented reality
	experiences.
Interoperability aspects	
Related data models	N/A
Information exchange	JSON
protocol	
Available API	A link will be provided when available.
Integration aspects	
Installation requirements	The application will be available in apk format. The
	preferred device system is Android and should guarantee a
	stable internet connection.
Integration requirements	Access to REST API to retrieve input data such as Chatbot
	reports and Generative AI artworks.
Software dependencies	The application depends on ARCore SDK, and the device
	should support Google Play Services for AR, otherwise AR
	experiences would not be available.
Technical dependencies	N/A
Deployment requirements	Docker
Example of existing	N/A
integration	
Critical factors for the	
integration	N/A
Connection to other tools	Chatbot [TL09_LINKS-G], Social media [TL10_LINKS-H],
	Generative AI [TL06_LINKS-D]

Security issues to be covered	Security issues are covered by an authentication, where the user should insert username and password.
Integrated security solution	The authentication system will be integrated using FusionAuth.
Existing security solution	N/A
Data management	
Data sharing and access limitations	N/A
Data interoperability limitations	N/A
Standards used	FAIR principles [1]

Table 10 - Technical specifications of the RescueME AI mobile application

2.10 Mapping Models

This AI-based tool will allow users to get delineation maps (both in terms of extension and severity of the investigated hazards) from Copernicus data pre- and post- events. The events covered by the tool are namely floods, wildfires and landslides, but the tools itself can also be applied to get information about land cover-related scenarios. The basic input information required for the service are an Area of Interest and a time range, while the output will be typically geo-referenced raster images, to be visualised on the GDIP. Figure 16 shows some examples of RescueME Mapping Models output. From top to bottom: wildfire delineation and severity, flood delineation, landslide delineation (from pre- and post- event imagery): Table 11 summarises the technical specifications of the Mapping Models:

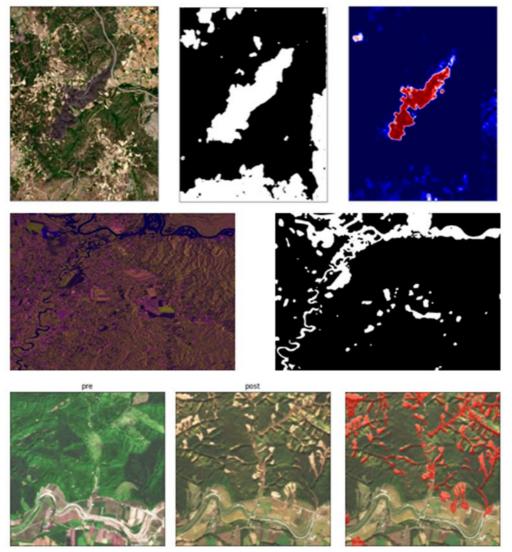


Figure 16 - Examples of RescueME Mapping Models output.

SOLUTION	MAPPING MODELS
ID	TL08_LINKS-F
Type of the solution	Software component
Solution description	This solution is composed of deep learning models trained to estimate the extension and the related severity of several natural hazards (e.g., fire, flood, landslide) starting from satellite imagery.
WP	WP3
Task	T3.3 - ST3.3.1
Responsible	Luca Barco luca.barco@linksfoundation.com
Description	
Functional Description	LINKS_MAPPING-MODELS_001 Fire delineation and severity assessment LINKS_MAPPING-MODELS_002 Flood delineation LINKS_MAPPING-MODELS_003 Landslide delineation
Technical Description	The solution is based on the State of the Art of computer vision deep learning models for semantic segmentation. The models are trained on the activations present on Copernicus Emergency Management Service (CEMS) [20] and work on satellite imageries coming mainly from Sentinel. The models can be used through APIs, asking for an Area of Interest (AoI) and a time range for the specific natural hazard the user is interested in. The best suitable images will be retrieved and passed to the model to obtain the predicted map with the delineation and/or severity estimation.
Input	 JSON containing: Aol Coordinates Time range (start date, end date) Spatial resolution Frequency Mapping type (fire, flood, landslide)
Output	Geo-referenced raster (GeoTIFF), where each pixel contains the result of the model inference.
Version	-
License / Terms of use / SLA	N/A (will be provided when available)

Online documentation	N/A (will be provided when available)
Programming Language	Python
Usage description	Tython .
Frequency of use	The tool will be available for the whole project duration.
Execution time	The tool can be executed in real time.
	GPU: requires at least 2GB per model.
System requirements	RAM: 16GB
	CPU: Intel(R) Core (TM) i9-10900X CPU @ 3.70GHz
Interoperability aspects	
Related data models	JSON
Information exchange	JSON
protocol	
Available API	N/A (will be provided when available)
Integration aspects	
Installation requirements	The module will run inside a suite of docker containers.
Integration requirements	A message bus should be up and running.
Software dependencies	SentinelHub APIs [21] (to download satellite imagery in real
	time).
Technical dependencies	Any particular hardware dependencies.
Deployment requirements	Internet connectivity, docker.
Example of existing	SHELTER [3] and SAFERS [22] project.
integration	
Critical factors for the	Availability of processing units and number of requests in
integration	the subscription to SentinelHub to use its APIs.
Connection to other tools	Data Lake [TL02_LINKS-A] , Web Application/Frontend
	[TL04_LINKS-C].
Security aspects	
Security issues to be	N/A
covered	
Integrated security	N/A
solution	
Existing security solution	N/A
Data management	
Data sharing and access	N/A
limitations	
Data interoperability	N/A
limitations	
Standards used	N/A

Table 11 - Technical specifications of the RescueME Mapping Models

2.11 Mobile Chatbot

The RescueMe Chatbot will be a conversational tool developed in the Telegram platform. It will enable a bidirectional communication channel between professional users or citizens and decision makers. As it is a crowdsourcing tool, it will gather useful information from the field in real-time and the users will be able to send geolocated report containing a textual description, multimedia objects (videos, photos, voice messages) and possibly additional details (e.g., specific measures). Meanwhile, the users will receive timely updates from the control centre/decision makers. Citizens will also have access to a gamification system, that rewards them for using the bot's functionalities, allowing them to gain points and win medals. The data collected through the chatbot will be stored and managed by the Crowdsourcing Intelligent Gateway and it will be shown in the Web Application/Frontend (ST3.2.2) as well as in the AR Mobile Application (ST3.2.4). To provide a filter over the data collection and limit an improper dissemination, the users will access the tool functionalities through an authentication system.

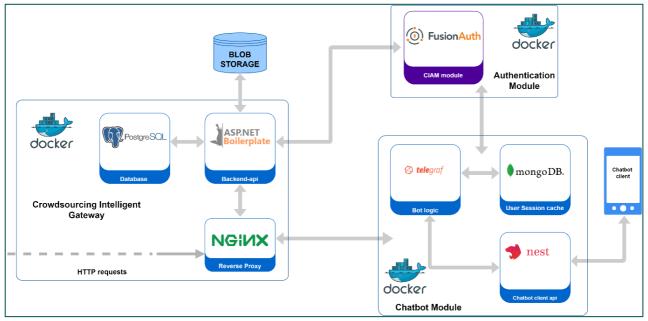


Figure 17 - The RescueME Mobile Chatbot architecture

Table 12 summarises the technical specifications of the Mobile Chatbot:

SOLUTION	СНАТВОТ
ID	TL09_LINKS-G
Type of the solution	Software component
Solution description	The solution will be a crowdsourcing tool developed as a Telegram bot. Professional users and citizens will use it to enable a bidirectional communication channel with decision makers. The corresponding KER is KR3.4: AI and crowdsourcing solutions for co-characterization of landscape values.
WP	WP3
Task	T3.3 - ST3.3.2
Responsible	Angelica Urbanelli angelica.urbanelli@linksfoundation.com Luca Bruno luca.bruno@linksfoundation.com
Description	
Functional Description	LINKS_CHATBOT_001 shares the user's location, status and activity LINKS_CHATBOT_002 receives and reads updates. LINKS_CHATBOT_003 receives and manages missions. LINKS_CHATBOT_004 sees and sends reports. LINKS_CHATBOT_005 reviews reports. LINKS_CHATBOT_006 changes settings. LINKS_CHATBOT_007 gamification for citizens.
Technical Description	 The solution will be composed of two main modules: the Crowdsourcing Intelligent Gateway (CIG) the chatbot application The CIG is directly connected with the Chatbot application. It stores and manages all the information generated with the Chatbot and acts as a proxy for all the requests coming from external clients. The Chatbot application will be a bot developed on the Telegram platform, implemented as a Nest application interacting with Telegram REST APIs.
Input	Input data is in JSON format.
Output	Output data is in JSON format.
Version	The last version developed for the SHELTER project [3] and used here as start solution is v2.7.2.
License / Terms of use / SLA	TBD

Online documentation	A user manual will be provided. The link will be provided
	when available.
Programming Language	Typescript
Usage description	
Frequency of use	The solution will stay up and running for all the duration of the project. Users can use it whenever they need it.
Execution time	The tool will be used in real-time.
System requirements	CPU
	2GB memory
	No GPU
	To use the tool, users will need a mobile device with
	Internet and GPS connectivity.
Interoperability aspects	
Related data models	Chatbot entities
Information exchange	JSON
protocol	
Available API	A link will be provided when available.
Integration aspects	
Installation requirements	To use the tool, the users will need to install the Telegram
	app, a well-known messaging application.
Integration requirements	Availability to call APIs
Software dependencies	N/A
Technical dependencies	N/A
Deployment requirements	Docker
Example of existing	The starting solution is a part of SHELTER project [3].
integration	
Critical factors for the	N/A
integration	
Connection to other tools	Web application/ frontend [TL04_LINKS-C], AR-Interface
	[TL07_LINKS-E].
Security aspects	
Security issues to be	User authentication with username/email and password
covered	
Integrated security	The solution is already integrated with FusionAuth.
solution	
Existing security solution	N/A
Other information	-
Data management	

Data sharing and access limitations	N/A
Data interoperability	No proprietary formats are used.
limitations	
Standards used	N/A

Table 12 - Technical specifications of the RescueME Mobile Chatbot

2.12 Social Media Module

The social media module will function as a pipeline, first collecting relevant social media content from various platforms through targeted searches and filtering. It will then clean and analyse this data, using AI based techniques (e.g., Sentiment Analysis and Topic Extraction) to gauge the users' perception to characterise specific CH assets within each R-Labscape. A predefined taxonomy will categorise these assets, while topic modelling uncovers the underlying themes discussed in relation to them. This will offer the stakeholders a comprehensive picture of public engagement with the R-Labscape's CH. Figure 18 reports the general architecture of the social media module.

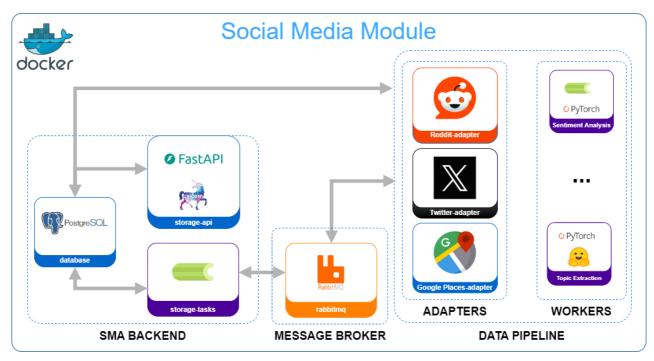


Figure 18 - The RescueME Social Media module architecture

Table 13 summarises the technical specifications of the Social Media module:

SOLUTION	SOCIAL MEDIA MODULE
ID	TL10_LINKS-H
Type of the solution	Software component
Solution description	The Social Media module analyses social media posts based on a specific classification system that represents the primary CH assets. Each asset will be evaluated over time across various dimensions to provide an overview of the CH, as it is reflected on social media, which also involves assessing the sentiment on the identified topics in order to characterise the landscape values.
WP	WP3
Task	T3.3 - ST3.3.2
Responsible	Fabio Caffaro fabio.caffaro@linksfoundation.com
Description	
Functional Description	LINKS_SOCIAL_001: Coordination and management of multiple social media sources LINKS_SOCIAL_002: Extraction, cleaning, and preprocessing of social media data LINKS_SOCIAL_003: Topic extraction and sentiment analysis for social media content LINKS_SOCIAL_004: Multilevel evaluation and characterization of cultural heritage assets The solution will be composed of the following main sub-
	 components: a stream data manager that automates data gathering. a content categorization and information extraction component. a data layer for data storage and retrieval.
Input	Social media data stream (e.g., Twitter data stream as JSON)
Output	Results of the analysis in a textual format (e.g. JSON)
Version	v1
License / Terms of use / SLA	N/A
Online documentation	Documentation will be made available if needed.
Programming Language	Python
Usage description	

Frequency of use	The solution will stay up and running for all the duration of the project.
Execution time	The tool can be executed in real-time.
System requirements	Quad Core CPU
oystelli requirements	16GB of RAM
Interoperability aspects	
Related data models	Taxonomy of valuable assets for each R-Labscape.
	JSON
Information exchange	3301
protocol	
Available API	The link will be provided when available.
Integration aspects	
Installation requirements	No specific requirements since it runs on LINKS premises.
Integration requirements	-
Software dependencies	No need of specific dependencies since the software will be
	running on LINKS premises.
Technical dependencies	N/A
Deployment requirements	N/A
Example of existing	SHELTER [3] and SAFERS [22] project
integration	
Critical factors for the	N/A
integration	
Connection to other tools	AR-Interface [TL07_LINKS-E], Generative AI [TL06_LINKS-
	D], Web Application/Frontend [TL04_LINKS-C]
Security aspects	
Security issues to be	User authentication
covered	 Authentication proxied by the id server
Integrated security	N/A
solution	
Existing security solution	N/A
Data management	
Data sharing and access	N/A
limitations	
Data interoperability	No proprietary formats are used.
limitations	
Standards used	N/A

Table 13 - Technical specifications of the RescueME Social Media module

2.13 Incremental Spatial Decision Support System (ISDSS)

The objective of the RescueME Incremental Spatial Decision Support System (ISDSS) is to develop a dynamic web application tailored specifically for coastal sites. This intuitive tool facilitates comprehensive analysis across various use cases. Once users are familiar with the current scenario, they can seamlessly navigate through a catalogue of solutions, refining and prioritizing based on their specific needs.

With the ability to filter and prioritise solutions, users can pinpoint those most suitable for their situation. Moreover, the system empowers users to simulate these solutions, providing insights into how each proposed intervention impacts key project indicators.

In addition, users can create and save projects, allowing them to revisit and review their analyses at any time. This feature enhances usability and ensures that users can track their progress and revisit previous assessments with ease. This holistic approach enables informed decision-making, facilitating the selection of strategies that optimise risk management and enhance coastal resilience.

ISDSS will relate to the rest of the RescueME ecosystem, the web app will be accessible via One-Stop-Shop and via the ATLAS. Once inside the application, it will take data from the Importer & Mapper and from the Meta-repository via REST API and simulations will be made in the backend that implemented Predictive impact modelling in CL. The described connections are shown in Figure 2 and Figure 19.

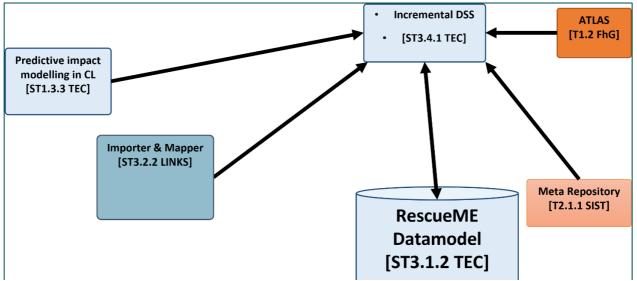


Figure 19 - Connection between the RescueME ISDSS, the Meta-repository and the ATLAS

Table 14 summarises the technical specifications of the ISDSS:

SOLUTION	INCREMENTAL SPATIAL DECISION SUPPORT SYSTEM
ID	TL11_TEC-B
Type of the solution	Software component
Solution description	Incremental Spatial Decision Support System (ISDSS) for the design and monitoring of Transformative pathways. The ISDSS will implement different levels of decision making with different levels of information requirements. The entry point will be the ATLAS of impacts. The CL typologies will be linked with the solution of the Meta-repository [TL01_SIST-A] to offer an early-stage decision making. The ARCH RAD and SHELTER resilience indicators will be used as first self-assessment tool. In higher levels of decision making, the solutions and measures will be linked with specific indicators to visualise a dynamic monitoring of the changing adaptive space and performance of the resilience solutions and propose new strategies when tipping points are reached.
WP	WP3
Task	T3.4 – ST3.4.1
Responsible	Asel Villanueva (TEC)
Description	
Functional Description	 TEC_ISDSS_001 Analyze baseline: the tool will allow to visualise, filter, and query the baseline information of the pilot, the user could analyze the baseline situation. TEC_ISDSS_002 Launch Simulation: the tool will relate to a simulation system that could be launched and visualise the results. TEC_ISDSS_003 Multicriteria Analysis: a user friendly multicriteria analysis will be implemented, enabling the possibility of prioritizing some indicators over others. TEC_ISDSS_004 Solution portfolio: ISDSS will be directly connected with the Meta-repository, the solutions will be displayed in table mode, and can be filtered and sorted. TEC_ISDSS_005 Solution Simulation: the solutions selected by the user will be simulated in the tool, recommending the best solution.

TEC_ISDSS_006 Project Management: projects created by the user could be saved and loaded again to check the project created.Technical DescriptionA web application will be implemented as a SPA (Single Page Application). Different javascript libraries will be used, such as CeisumJS or Strapi client, and some TEC internat libraries like CityMirrorViewer or ResilientScape. The final solution will have login and petitions will require a valid token for working.InputCity Information Meta RepositoryOutputJSON with ResultsVersion- CityMirror Viewer: 24.5.1 - CityMirror Viewer (registered) - CityMirror Viewer (registered) - CityMirror (registered) - ResilientScape: 24.5.1License / Terms of use / SLA- CityMirror Viewer (registered) - ResilientScape (registered) - ResilientScape (registered)Online documentationA link will be provided when available.Programming Language avaitable during the duration of the project.Execution timeThe solution will be deployed in a server and will be available during the duration of the project.System requirementsCPU with 2.4 GHz 4 GB RAM GPU desirable but not manatoryInteroperability aspectsCItyGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST API The solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/ASoftware dependenciesN/A		1
project created.Technical DescriptionA web application will be implemented as a SPA (Single Page Application). Different javascript libraries will be used, such as CeisumJS or Strapi client, and some TEC internat libraries like CityMirrorViewer or ResilientScape. The final solution will have login and petitions will require a valid token for working.InputCity Information Meta RepositoryOutputJSON with ResultsVersion- CityMirror Viewer: 24.5.1 - CityMirror Viewer: 24.5.1 - CityMirror Viewer (registered)SLA- CityMirror Viewer (registered) - CityMirror viewer (registered)Online documentationA Link will be provided when available.Programming LanguageJavascriptUsage descriptionThe solution will be deployed in a server and will be available during the duration of the project.Execution timeThe solution response will be real-time, the simulations will take some minutes to execute.System requirementsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolA Link will be provided when available.Interoperability aspectsREST APIIntegration aspectsThe solution will be provided as a docker container, it can be deployed in an system with docker.Integration requirementsN/A		TEC_ISDSS_006 Project Management: projects created by
Technical DescriptionA web application will be implemented as a SPA (Single Page Application). Different javascript libraries will be used, such as CeisumJS or Strapi client, and some TEC internal libraries like CityMirrorViewer or ResilientScape. The final solution will have login and petitions will require a valid token for working.InputCity Information Meta RepositoryOutputJSON with ResultsVersion- CityMirror Viewer: 24.5.1 . CityMirror Viewer: 24.5.1 . CityMirror Viewer (registered) . CityMirror (registered) . CityMirror (registered) . CityMirror (registered) . CityMirror viewer (registered)Online documentationA link will be provided when available.Programming Language will take some minutes to execute.The solution will be deployed in a server and will be available during the duration of the project.Execution timeCPU with 2.4 GHz 4 GB RAM GPU desirable but not mandatoryInteroperability aspectsREST API REST APIRelated data modelsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST API Mest API A link will be provided when available.Integration requirementsN/ASolution will be provided as a docker container, it can be deployed in any server with docker.		C C
Page Application). Different javascript libraries will be used, such as CeisumJS or Strapi client, and some TEC internal libraries like CityMirrorViewer or ResilientScape. The final solution will have login and petitions will require a valid token for working.InputCity Information Meta RepositoryOutputJSON with ResultsVersion• CityMirror Viewer: 24.5.1 •		project created.
such as CeisumJS or Strapi client, and some TEC internal libraries like CityMirrorViewer or ResilientScape. The final solution will have login and petitions will require a valid token for working.InputCity Information Meta RepositoryOutputJSON with ResultsVersion- CityMirror Viewer: 24.5.1 - CityMirror Viewer (registered)SLA- CityMirror Viewer (registered) - CityMirror (registered) - CityMirror (registered) - CityMirror (registered) - CityMirror (registered) - ResilientScape (registered)Online documentationA link will be provided when available.Pregremory of use available during the duration of the project.Execution timeThe solution will be deployed in a server and will be available during the duration of the project.System requirementsCPU with 2.4 GHz 4GB RAM GPU desirable but not mandatoryInteroperability aspectsCPU with 2.3 DTiles, GeoJSON, JSON.Information exchange protocolREST APIIntegration requirementsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsThe solution will be provided as a docker container, it can be deployed in any server with docker.	Technical Description	A web application will be implemented as a SPA (Single
libraries like CityMirrorViewer or ResilientScape. The final solution will have login and petitions will require a valid token for working.InputCity Information Meta RepositoryOutputJSON with ResultsVersion- CityMirror Viewer: 24.5.1 - CityMirror Viewer: 24.5.1 - CityMirror Viewer (registered) - ResilientScape:24.5.1License / Terms of use / SLA- CityMirror Viewer (registered) - CityMirror Viewer (registered) - ResilientScape (registered) - BesilientScape (registered) - A link will be provided when available.Programming Language Usage descriptionJavascriptFrequency of use (Prequency of use - CityMirror Viewer intervency)The solution will be deployed in a server and will be available during the duration of the project.Execution time (Prequency of use - The application response will be real-time, the simulations will take some minutes to execute.System requirements - Related data modelsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST API 		Page Application). Different javascript libraries will be used,
solution will have login and petitions will require a valid token for working.InputCity Information Meta RepositoryOutputJSON with ResultsVersion- CityMirror Viewer: 24.5.1 - CityMirror: 24.5.1 - CityMirror Viewer (registered) - ResilientScape:24.5.1License / Terms of use / SLA- CityMirror Viewer (registered) - ResilientScape (registered) - ResilientScape (registered)Online documentationA link will be provided when available.Programming Language Usage descriptionThe solution will be deployed in a server and will be available during the duration of the project.Execution timeThe solution will be deployed in a server and will be available during the duration of the project.System requirementsCPU with 2.4 GHz 4GB RAM BPU desirable but not mandatoryInteroperability aspectsREST API - A link will be provided when available.Information exchange protocolREST API - CityGML, 3DTiles, GeoJSON, JSON.Integration requirementsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/A		such as CeisumJS or Strapi client, and some TEC internal
token for working.InputCity Information Meta RepositoryOutputJSON with ResultsVersion• CityMirror Viewer: 24.5.1 • CityMirror 24.5.1 • CityMirror Viewer (registered) • CityMirror (registered) • CityMirror (registered) • CityMirror (registered) • CityMirror (registered) • ResilientScape (registered) • ResilientScape (registered)Online documentationA link will be provided when available.Programming LanguageJavascriptUsage descriptionThe solution will be deployed in a server and will be available during the duration of the project.Frequency of useThe solution response will be real-time, the simulations will take some minutes to execute.System requirementsCPU with 2.4 GHZ 4GB RAM GPU desirable but not mandatoryInteroperability aspectsREST API ProtocolAvailable APIA link will be provided when available.Integration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/A		libraries like CityMirrorViewer or ResilientScape. The final
InputCity Information Meta RepositoryOutputJSON with ResultsVersion• CityMIrror Viewer: 24.5.1 • CityMirror: 24.5.1 • CityMirror Viewer (registered) • CityMirror (registered) • CityMirror (registered) • CityMirror (registered) • ResilientScape (registered)Donline documentationA link will be provided when available.Programming Language Usage descriptionThe solution will be deployed in a server and will be available during the duration of the project.Execution timeThe solution response will be real-time, the simulations will take some minutes to execute.System requirementsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST API The solution will be provided when available.Integration requirementsThe solution will be provided when available.Integration exchange protocolREST API The solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/A		-
Meta RepositoryOutputJSON with ResultsVersion- CityMIrror Viewer: 24.5.1 - CityMirror Viewer (registered) - CityMirror Viewer (registered) - CityMirror (registered) - ResilientScape (registered) - ResilientScape (registered)License / Terms of use / SLA- CityMirror (registered) - ResilientScape (registered) - ResilientScape (registered)Online documentationA link will be provided when available.Programming LanguageJavascriptUsage descriptionThe solution will be deployed in a server and will be available during the duration of the project.Execution timeThe application response will be real-time, the simulations will take some minutes to execute.System requirementsCPU with 2.4 GHz 4GB RAM GPU desirable but not mandatoryInteroperability aspectsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolA link will be provided when available.Integration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/A		token for working.
Output JSON with Results Version CityMIrror Viewer: 24.5.1 CityMirror: 24.5.1 ResilientScape:24.5.1 License / Terms of use / CityMIrror Viewer (registered) SLA CityMirror (registered) Online documentation A link will be provided when available. Programming Language Javascript Usage description The solution will be deployed in a server and will be available during the duration of the project. Execution time The application response will be real-time, the simulations will take some minutes to execute. System requirements CPU with 2.4 GHz 4GB RAM GPU desirable but not mandatory Interoperability aspects REST API Protocol A link will be provided when available. Integration aspects The solution will be deployed in a server and will be available but not mandatory Integration aspects REST API Protocol A link will be provided when available. Integration requirements The solution will be provided as a docker container, it can be deployed in any server with docker. Integration requirements N/A	Input	City Information
Version• CityMIrror Viewer: 24.5.1 • CityMirror: 24.5.1 • ResilientScape:24.5.1License / Terms of use / SLA• CityMIrror Viewer (registered) • CityMirror (registered) • CityMirror (registered) • ResilientScape (registered)Online documentationA link will be provided when available.Programming LanguageJavascriptUsage descriptionThe solution will be deployed in a server and will be available during the duration of the project.Frequency of useThe solution response will be real-time, the simulations will take some minutes to execute.System requirementsCPU with 2.4 GHz 4GB RAM GPU desirable but not mandatoryInteroperability aspectsREST API ProtocolIntegration aspectsThe solution will be provided when available.Integration requirementsN/ASoftware dependenciesN/A		Meta Repository
 CityMirror: 24.5.1 ResilientScape:24.5.1 License / Terms of use / SLA CityMirror Viewer (registered) CityMirror (registered) ResilientScape (registered) ResilientScape (registered) Online documentation A link will be provided when available. Programming Language Javascript Usage description Frequency of use The solution will be deployed in a server and will be available during the duration of the project. Execution time The application response will be real-time, the simulations will take some minutes to execute. System requirements CPU with 2.4 GHz 4GB RAM GPU desirable but not mandatory Interoperability aspects Related data models CityGML, 3DTiles, GeoJSON, JSON. Information exchange protocol A link will be provided when available. Integration aspects The solution will be provided as a docker container, it can be deployed in any server with docker. Integration requirements N/A Software dependencies N/A 	Output	JSON with Results
Icicense / Terms of use / SLAResilientScape:24.5.1License / Terms of use / SLACityMirror Viewer (registered) • CityMirror (registered) • ResilientScape (registered)Online documentationA link will be provided when available.Programming Language Usage descriptionJavascriptFrequency of useThe solution will be deployed in a server and will be available during the duration of the project.Execution timeThe application response will be real-time, the simulations will take some minutes to execute.System requirementsCPU with 2.4 GHz 4GB RAM GPU desirable but not mandatoryInteroperability aspectsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST APIIntegration aspectsThe solution will be provided when available.Integration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/A	Version	CityMIrror Viewer: 24.5.1
License / Terms of use / SLA• CityMIrror Viewer (registered) • CityMirror (registered) • ResilientScape (registered)Online documentationA link will be provided when available.Programming LanguageJavascriptUsage descriptionThe solution will be deployed in a server and will be available during the duration of the project.Frequency of useThe solution response will be real-time, the simulations will take some minutes to execute.System requirementsCPU with 2.4 GHz 4GB RAM GPU desirable but not mandatoryInteroperability aspectsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolThe solution will be provided when available.Integration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/A		CityMirror: 24.5.1
SLA• CityMirror (registered) • ResilientScape (registered)Online documentationA link will be provided when available.Programming LanguageJavascriptUsage descriptionJavascriptFrequency of useThe solution will be deployed in a server and will be available during the duration of the project.Execution timeThe application response will be real-time, the simulations will take some minutes to execute.System requirementsCPU with 2.4 GHz 4GB RAM GPU desirable but not mandatoryInteroperability aspectsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST APIInstallation requirementsThe solution will be provided when available.Integration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/ASoftware dependenciesN/A		ResilientScape:24.5.1
• ResilientScape (registered)Online documentationA link will be provided when available.Programming LanguageJavascriptUsage descriptionThe solution will be deployed in a server and will be available during the duration of the project.Frequency of useThe solution response will be real-time, the simulations will take some minutes to execute.System requirementsCPU with 2.4 GHz 4GB RAM GPU desirable but not mandatoryInteroperability aspectsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST API ProtocolIntegration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/ASoftware dependenciesN/A	License / Terms of use /	CityMIrror Viewer (registered)
Online documentationA link will be provided when available.Programming LanguageJavascriptUsage descriptionThe solution will be deployed in a server and will be available during the duration of the project.Frequency of useThe solution response will be real-time, the simulations will take some minutes to execute.System requirementsCPU with 2.4 GHz 4GB RAM GPU desirable but not mandatoryInteroperability aspectsRelated data modelsRelated data modelsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST APIIntegration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/ASoftware dependenciesN/A	SLA	CityMirror (registered)
Programming Language Javascript Usage description The solution will be deployed in a server and will be available during the duration of the project. Frequency of use The solution will be deployed in a server and will be available during the duration of the project. Execution time The application response will be real-time, the simulations will take some minutes to execute. System requirements CPU with 2.4 GHz 4GB RAM GPU desirable but not mandatory Interoperability aspects CityGML, 3DTiles, GeoJSON, JSON. Related data models CityGML, 3DTiles, GeoJSON, JSON. Information exchange REST API protocol A link will be provided when available. Integration aspects The solution will be provided as a docker container, it can be deployed in any server with docker. Integration requirements N/A Software dependencies N/A		ResilientScape (registered)
Usage description Frequency of use The solution will be deployed in a server and will be available during the duration of the project. Execution time The application response will be real-time, the simulations will take some minutes to execute. System requirements CPU with 2.4 GHz 4GB RAM GPU desirable but not mandatory Interoperability aspects CityGML, 3DTiles, GeoJSON, JSON. Information exchange REST API protocol A link will be provided when available. Integration aspects The solution will be provided as a docker container, it can be deployed in any server with docker. Integration requirements N/A	Online documentation	A link will be provided when available.
Frequency of useThe solution will be deployed in a server and will be available during the duration of the project.Execution timeThe application response will be real-time, the simulations will take some minutes to execute.System requirementsCPU with 2.4 GHz 4GB RAM GPU desirable but not mandatoryInteroperability aspectsRelated data modelsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST APIAvailable APIA link will be provided when available.Integration requirementsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/ASoftware dependenciesN/A	Programming Language	Javascript
Available during the duration of the project.Execution timeThe application response will be real-time, the simulations will take some minutes to execute.System requirementsCPU with 2.4 GHz 4GB RAM GPU desirable but not mandatoryInteroperability aspectsCityGML, 3DTiles, GeoJSON, JSON.Related data modelsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST APIAvailable APIA link will be provided when available.Integration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/ASoftware dependenciesN/A	Usage description	
Execution timeThe application response will be real-time, the simulations will take some minutes to execute.System requirementsCPU with 2.4 GHz 4GB RAM GPU desirable but not mandatoryInteroperability aspectsCityGML, 3DTiles, GeoJSON, JSON.Related data modelsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST APIAvailable APIA link will be provided when available.Integration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/ASoftware dependenciesN/A	Frequency of use	The solution will be deployed in a server and will be
will take some minutes to execute.System requirementsCPU with 2.4 GHz 4GB RAM GPU desirable but not mandatoryInteroperability aspectsGPU desirable but not mandatoryRelated data modelsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST APIAvailable APIA link will be provided when available.Integration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/ASoftware dependenciesN/A		available during the duration of the project.
System requirementsCPU with 2.4 GHz 4GB RAM GPU desirable but not mandatoryInteroperability aspectsRelated data modelsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST APIAvailable APIA link will be provided when available.Integration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/ASoftware dependenciesN/A	Execution time	The application response will be real-time, the simulations
4GB RAM GPU desirable but not mandatoryInteroperability aspectsRelated data modelsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST APIAvailable APIA link will be provided when available.Integration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/ASoftware dependenciesN/A		will take some minutes to execute.
GPU desirable but not mandatoryInteroperability aspectsRelated data modelsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST APIAvailable APIA link will be provided when available.Integration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/ASoftware dependenciesN/A	System requirements	CPU with 2.4 GHz
Interoperability aspectsRelated data modelsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST APIAvailable APIA link will be provided when available.Integration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/ASoftware dependenciesN/A		4GB RAM
Related data modelsCityGML, 3DTiles, GeoJSON, JSON.Information exchange protocolREST APIAvailable APIA link will be provided when available.Integration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/ASoftware dependenciesN/A		GPU desirable but not mandatory
Information exchange REST API protocol A link will be provided when available. Available API A link will be provided when available. Integration aspects The solution will be provided as a docker container, it can be deployed in any server with docker. Integration requirements N/A Software dependencies N/A	Interoperability aspects	
protocolAAvailable APIA link will be provided when available.Integration aspectsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/ASoftware dependenciesN/A	Related data models	CityGML, 3DTiles, GeoJSON, JSON.
Available API A link will be provided when available. Integration aspects The solution will be provided as a docker container, it can be deployed in any server with docker. Integration requirements N/A Software dependencies N/A	Information exchange	REST API
Integration aspects Installation requirements The solution will be provided as a docker container, it can be deployed in any server with docker. Integration requirements N/A Software dependencies N/A	protocol	
Installation requirementsThe solution will be provided as a docker container, it can be deployed in any server with docker.Integration requirementsN/ASoftware dependenciesN/A	Available API	A link will be provided when available.
deployed in any server with docker. Integration requirements N/A Software dependencies N/A	Integration aspects	
Integration requirements N/A Software dependencies N/A	Installation requirements	The solution will be provided as a docker container, it can be
Software dependencies N/A		deployed in any server with docker.
· · ·	Integration requirements	N/A
Technical dependencies N/A	Software dependencies	N/A
	Technical dependencies	N/A

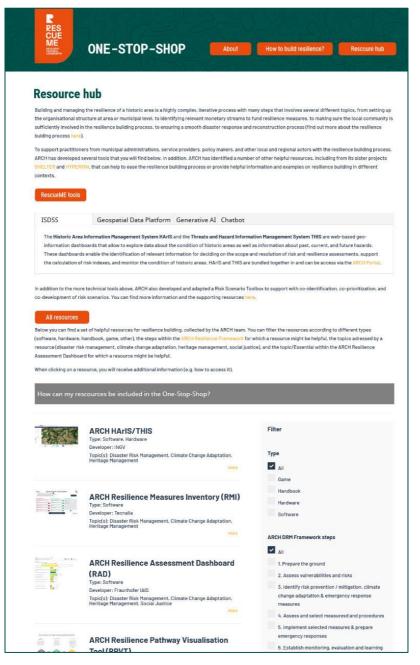
Deployment requirements	N/A
Example of existing	The starting solution is a part of SHELTER project [3]
integration	
Critical factors for the	N/A
integration	
Connection to other tools	Predictive impact modelling, Importer & Mapper
	[TL03_LINKS-B], Meta-repository [TL01_SIST-A], ATLAS
	[TL00_TEC-A].
Security aspects	
Security issues to be	Authentication will be required for the application.
covered	
Integrated security	Register/Login system will be implemented.
solution	
Existing security solution	N/A
Data management	
Data sharing and access	N/A
Data interoperability	N/A
limitations	
Standards used	N/A
limitations	

Table 14 - Technical specifications of the RescueME ISDSS

2.14 One-Stop-Shop

The RescueME One-Stop-Shop will be realised as a website that acts as the entry point for end-users to all RescueME digital solutions as well as additional information and results of the RescueME project. As such, the One-Stop-Shop will act as a knowledge base, providing collections of relevant information, guidance, best practices, and other resources to answer questions like "*What is resilience in the context of cultural landscapes?*", "*What measures can be taken to build resilience in cultural landscapes?*", "*What are common risks for cultural landscapes in Europe?*", and more. Where possible, the One-Stop-Shop will directly link to RescueME solutions to support answering these questions.

The technical basis of the One-Stop-Shop will be WordPress [23], i.e., a content management system that allows to create web pages and store static information for information provision and visualization. The WordPress instance will be hosted using FhG's central webhosting services. This allows very easy maintenance, as the technical infrastructure is maintained as part of FhG's central IT services, while maintenance of the


content lies within the responsibility of the department conducting the project work¹. If required, additional RescueME partners can act as content creators and maintainers. Currently planned key features of the One-Stop-Shop are:

- Users can browse resilience solutions (handbooks, tools, etc.); they get detailed information for each tool (developer, license, target audience, access link, detailed description of functionality).
- User can filter solutions according to the RescueME Resilient Landscape Framework.
- User can browse best practices for resilience building.
- Users can filter best practices for resilience building (e.g. covered hazards, stressors, DRM phases, implemented resilience measures).
- Users get detailed information on resilience building for CLs (e.g., a step-by-step guide).

Additional key features and requirements will be gathered during the runtime of RescueME. Figure 20 shows a mock-up of an exemplary page of the RescueME One-Stop-Shop based on the ARCH HUB [25] of the ARCH [9] project.

¹ In case of RescueME, this is the Adaptive Reflective Teams department of the Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS

Figure 20 - Mock-up of an exemplary page of the RescueME One-Stop-Shop based on the ARCH Hub [25]

Table 15 summarises the technical specifications of the One-Stop-Shop:

SOLUTION	ONE-STOP-SHOP
ID	TL12_FHG-A
Type of the solution	Platform, i.e. WordPress website
Solution description	A website that allows users to browse information on resilience, how to build resilience, search for best practices and tools. Specifically, it will provide the single access point to other RescueME solutions via links.
WP	WP3
Task	T3.4 - ST3.4.2
Responsible	Daniel Lückerath (FhG)
Description	
Functional Description	 FHG_ONESTOPSHOP_001 Users can browse resilience solutions (handbooks, tools, etc.); they get detailed information for each tool (developer, license, target audience, access link, detailed description of functionality). FHG_ONESTOPSHOP_002 User can filter solutions according to the RescueME Resilient Landscape Framework. FHG_ONESTOPSHOP_003 User can browse best practices for resilience building. FHG_ONESTOPSHOP_004 Users can filter best practices for resilience building (e.g. covered hazards, stressors, DRM phases, implemented resilience measures). FHG_ONESTOPSHOP_005 Users get detailed information on resilience building for cultural landscapes (e.g. a step-by-step guide).
Technical Description	WordPress website hosted at the central Fraunhofer services.
Input	N/A, all input is done via the WordPress admin interface.
Output	N/A, it's a website with static texts and some filtering mechanisms.
Version	1.0 [25]
License / Terms of use / SLA	No license from end users necessary, as this is hosted by Fraunhofer.
Online documentation	https://wordpress.com
Programming Language	Html, css,
Usage description	
Frequency of use	On demand

Execution time	N/A
System requirements	N/A
Interoperability aspects	
Related data models	N/A
Information exchange	N/A
protocol	
Available API	N/A
Integration aspects	
Installation requirements	N/A
Integration requirements	N/A
Software dependencies	WordPress as well as multiple WordPress addons (e.g., Divi)
Technical dependencies	N/A
Deployment requirements	N/A
Example of existing	http://hub.savingculturalheritage.eu/
integration	
Critical factors for the	N/A
integration	
Connection to other tools	N/A
Security aspects	
Security issues to be	N/A
covered	
Integrated security	N/A
solution	
Existing security solution	N/A
Data management	
Data sharing and access	N/A
limitations	
Data interoperability	N/A
limitations	
Standards used	N/A

Table 15 - Technical specifications of the RescueME One-Stop-Shop

2.15 Summary and Categorization of Solutions

As anticipated in Section 2.1, the different tools and solutions described in the previous sections can be mapped towards some relevant steps of the data value chain:

- Data narration: thank to the One-Stop-Shop, the users can get introduced to concepts, data, best practices, guidelines, etc. and can be accompanied into tackling typical tasks and processes, to achieve the knowledge they need through proper data and tools.
- **Data interaction**: through the Geospatial Data Intelligent Platform, the Incremental Spatial Decision Support System, the ATLAS, the Meta-repository and the AR Application, the users can interact directly with the available content, data and tools, taking advantage of existing approaches or innovate them through iterative explorations.
- **Data elaboration**: the Mapping Models, the AI-generated images and the Social Media Module create and add new content and data, starting and elaborating on existing ones.
- **Data sources**: the Data Lake, the Chatbot, the Social Media Module and the Copernicus / In-situ data provider make available existing or newly created content and data.

3 Data Model Technical Specifications

In geospatial data domain, the choice of technologies for storing and sharing data has significant importance. This is because large amounts of data are needed, in very different formats and with a high level of detail. Herein lies the need to identify the requirements of the applications in a pre-development phase and define the formats in which they will work and how the data exchange between applications will be carried out.

In the given context, the initial step was to utilise the principles and guidelines outlined by the SHELTER project [3], an established framework or set of standards, to formulate a set of requirements. SHELTER's previous experience provided a basis to identify requirements that are adapted to the RescueME project context. These requirements cover the core features that the system needed to provide, aligned with the project's objectives and the needs of the involved stakeholders.

However, understanding that RescueMe project is dynamic and evolving, it is essential to say that the initial set of requirements is a starting point. It is understood that these requirements would be subjected to a validation and refinement process to ensure their accuracy, and alignment within the project context.

This validation process involves collaboration with diverse stakeholders, including domain experts, end-users, and project managers to identify potential gaps or overlaps, and refining the requisites to reflect how the system would work in the real world. Moreover, the validation and refinement process consider the specific contexts observed in the case studies within the RescueME project. These case studies provide a valuable understanding of the operational environments, and user needs, allowing to contextually fit and develop an appropriate set of requirements. This approach ensures that the requirements are not static but evolving with the project's progress.

During the project meetings and considering the experience in previous projects, the work has been carried out to identify the requirements presented by the applications so that once they are developed, the different data that will be collected in the project can be stored, both in format as for its correct sending to other services. The requirements have been differentiated at the application, geospatial and generic levels.

3.1 Application Domain Requirements

From the application point of view, the applications that are going to make use of the data, the way in which they are going to make use of them, and the different exchange protocols have been identified. To prevent any issue with the data models and their transfer during the

development phase, the application domain requirements have been collected and described in Table 16.

ID	REQUIREMENT	MANDATORY OPTIONAL
REQ_APP_1	It should be able to authenticate with the external Authentication server with AA Server	Optional
REQ_APP_2	It should be able to hold information from the indicators	Optional
REQ_APP_3	It should be able to hold information from the Serious Game tool	Optional
REQ_APP_4	It should be able to display IoT information	Optional
REQ_APP_5	RescueME data model must allow easy integration of new data/information sources (e.g., addition of new tools or IoT devices in case study areas)	Optional
REQ_APP_6	RescueME data model should allow direct stakeholders to set automatic notifications or alerts when new relevant information is processed by the system	Optional
REQ_APP_7	RescueME data model should record all direct stakeholder's actions, processing and decisions (Who, What, Where, When or Why) in an audit log file.	Optional
REQ_APP_8	RescueME data model should be able to link the Meta-repository to the ISDSS	Mandatory

Table 16 - RescueME Application Domain Requirements for Data Models

3.2 Geospatial Requirements

Since geospatial data is usually generated once and does not change over time, the activities focusing on the geospatial section focus on the correct storage of data. In the possibility of a change, different types of data are used. To carry out the particularities of geospatial data and the interaction with applications, a table collecting these requirements has been developed (Table 17)

ID	REQUIREMENT	MANDATORY OPTIONAL
REQ_GEO_1	RescueME data model must allow representation of geometric information with different levels of detail	Mandatory
REQ_GEO_2	The language or file format for the representation of geometric information should allow modelling and storing geographic information	Mandatory
REQ_GEO_3	RescueME data model must be able to represent different natural elements as well as elements in human settlements of different scales such as	Optional

	buildings, public spaces, green areas or water bodies.	
REQ_GEO_4	RescueME data model must store information of the geometry of natural and urban elements.	Mandatory
REQ_GEO_5	The geometry of the elements modelled in RescueMe must be correctly referenced in altitude with respect to the elevation model.	Mandatory
REQ_GEO_6	Spatial information can be represented in georeferenced vector or raster format	Mandatory
REQ_GEO_7	The geometric information in vector format can be represented by pints, lines or polygons	Mandatory
REQ_GEO_8	Linear geometry of a layer must not overlap with lines of the same entity	Mandatory
REQ_GEO_9	The linear geometry must not overlap with itself	Mandatory
REQ_GEO_10	The linear geometry of an entity must be a single part avoiding multipart features	Mandatory
REQ_GEO_11	The interior of a polygon in a layer must not overlap. It is possible to share edges or vertices	Mandatory
REQ_GEO_12	The geometric elements must have the same coordinate system, if not, they must be projected in the same system to be referenced equally in the same position	Mandatory
REQ_GEO_13	For raster elements, the spatial resolution (pixel size) must be appropriately defined considering the display scale	Optional
REQ_ GEO_14	The geometric elements must have an adequate numerical precision for an exact cartographic and analytical representation	Optional

Table 17 - RescueME Geospatial Requirements for Data Models

3.3 Generic Requirements

Generic requirements refer to those requirements that, although they do not come directly from the project or functionality, are necessary for its correct functioning. Such requirements, collected and described in Table 18, must be considered by the R-Labscapes during the development of the project.

ID	REQUIREMENT	MANDATORY OPTIONAL
REQ_GEN_1	RescueME data model must support information at different scales, from building to cross-regional	Mandatory
REQ_GEN_2	RescueME data model must include geographic, 2D and 3D as well as semantic information	Mandatory
REQ_GEN_3	RescueME data model must include information on the different hazards to be analysed	Mandatory

	1	
REQ_GEN_4	RescueME data model must be based on standards to facilitate the interoperability	Mandatory
REQ_GEN_5	RescueME data model must include the information about the Resilience Indicators	Mandatory
REQ_GEN_6	RescueMe data model and all the elements included must be correctly georeferenced on a universal coordinate system in latitude, longitude and elevation	Mandatory
REQ_GEN_7	RescueME data model should be extensible in both, spatial extension and semantic information related to the elements in the model	Mandatory
REQ_GEN_8	RescueME data model geometric and semantic information must be divided in different layers to avoid coupling and promote it reuse	Optional
REQ_GEN_9	RescueME data model should be able to include information at least for the five case studies: Portovenere, Cinque Terre & the Island, Historical Irrigation System at l'Horta de València, Hamburg- Neuwerk in the National Park Hamburg Wadden Sea, Psiloritis UNESCO Global geopark, Defensive System of Zadar	Mandatory
REQ_GEN_10	RescueME data model must allow system administrators to easily update relevant content (for instance: areas affected by a hazard)	Mandatory
REQ_GEN_11	RescueME data model should contain information about CL elements and their status in the RHL	Optional
REQ_GEN_12	RescueME data model information must be secure	Mandatory
REQ_GEN_13	RescueME data model shall support the organization of the information collected to enable an effective consultation and analysis.	Optional
REQ_GEN_14	RescueME data model should include an Index or conceptual scheme of the information stored to facilitate data retrieving	Optional
REQ_GEN_15	It should be allowed to modify accessibility permissions of users at any moment	Mandatory
REQ_GEN_16	RescueME data model should allow to search for information/data by different parameters (e.g., keywords, multiple filters)	Mandatory
REQ_GEN_17	RescueMe data model should be linked to historical information of CL	Mandatory
REQ_GEN_18	Administrators of RescueME data model should be able to audit past and present activity carried out by direct users	Optional
REG_GEN_19	Semantic information should be based on defined ontologies, standards, normative, directives or guidelines recognised by international experts and organizations	Mandatory

REQ_GEN_20

Semantic information should be linked to the corresponding geometric element

Mandatory

Table 18 - RescueME Generic Requirements for Data Models

3.4 Data Models

Table 19 summarises the technical specifications of the Data Models:

TITLE	DESCRIPTION
Name	CityGML
Short Description	CityGML is an international standard developed by the Open Geospatial Consortium (OGC) and is widely recognised in the geospatial and urban planning communities. It consists of an open data model and XML-based format used for the storage and exchange of 3D city models and urban geographic information.
Pros	Standard
	 Contains most of the city parameters. Extensible via ADE (Utility Network, Noise, Energy)
Cons	Not suitable for dynamic/real time data
	 Not contemplated data should be added as generic attribute.
Algorithm / process	Different data sources such as cadastre, Open Street Maps, city council and any city data are processed and converted for generating the city information model in CityGML format. CityGML is not directly consumed by any solution but is used to generate other formats like 3DTiles and WMS and to run processes against them.
Related Digital Solutions	 Data Lake [TL02_LINKS-A] Importer & Mapper [TL03_LINKS-B] ISDSS [TL11_TEC-B]

Table 19 - Technical specifications of RescueME CityGML Data Models

TITLE	DESCRIPTION
Name	3DTiles
Short Description	3D Tiles is a format and specification developed for the
	efficient streaming and rendering of 3D geospatial data, it is

	designed to support the visualization of complex 3D models.
Pros	 Optimal for big 3D Models Via steaming, not blocking the app Supported by most 3D Viewer such as Cesium Fast for geospatial queries.
Cons	 Impossible to know if a model is loaded or not in the viewer. The number of models loaded depends on the machine/screen.
Algorithm / process	3D Tiles is generated from the CityGML, generating a file for each of the city elements (buildings, trees, benches) It could be updated to the application or served via service or via cesium web.
Related Digital Solutions	 Data Lake [TL02_LINKS-A] Importer & Mapper [TL03_LINKS-B] ISDSS [TL11_TEC-B]

 Table 20 - Technical specifications of RescueME 3D Tiles Data Models

TITLE	DESCRIPTION	
Name	GeoJSON	
Short Description	Format for encoding geographic data using the JSON notation.	
Pros	 Lightweight and easy to understand syntax. Supports various geometries and properties. Human-readable format. 	
Cons	 Limited support for complex geospatial operations. Not suitable for large datasets. No built-in compression mechanism. 	
Algorithm / process	Some GeoJSON are generated inside the project and others are directly available form data sources. In general, is used to exchange geographic information between application or services.	
Related Digital Solutions	 Data Lake [TL02_LINKS-A] Importer & Mapper [TL03_LINKS-B] ISDSS [TL11_TEC-B] 	

Table 21 - Technical specifications of RescueME GeoJSON Data Models

TITLE	DESCRIPTION
Name	Web Map Service (WMS)
Short Description	Standard protocol for serving georeferenced map images over the internet.
Pros	 Provides on-demand map images that can be dynamically styled and overlaid. Supports various coordinate systems and projections.
Cons	Limited interactivity, as it only serves static images.Performance may degrade with high server loads.
Algorithm / process	The shape files and generated maps are imported to the Geoserver or similar and make available via WMS.
Related Digital Solutions	 Data Lake [TL02_LINKS-A] Importer & Mapper [TL03_LINKS-B] ISDSS [TL11_TEC-B]

Table 22 - Technical specifications of RescueME WMS Data Models

TITLE	DESCRIPTION
Name	JSON
Short Description	Lightweight data interchange format
Pros	Simple and easy to read/write.
	Widely supported across programming languages and
	platforms.
	Ideal for data interchange between systems.
Cons	Lacks schema definition, leading to potential data
	integrity issues.
	Not optimised for large datasets.
Algorithm / process	Directly generated by the services and applications, most
	common way of exchanging data.
Related Digital Solutions	Meta-repository [TL01_SIST-A]
	Data Lake [TL02_LINKS-A]
	 Importer & Mapper [TL03_LINKS-B]
	 Web Application/ Frontend [TL04_LINKS-C]
	Geospatial Data Intelligent Platform [TL05_DRAXIS-A]
	Generative AI [TL06_LINKS-D]
	AR Mobile Application [TL07_LINKS-E]

Mapping Models [TL08_LINKS-F]
 Mobile Chatbot [TL09_LINKS-G]
 Social Media Module [TL10_LINKS-H]
 ISDSS [TL11_TEC-B]
 One-Stop-Shop [TL12_FHG-A]

Table 23 - Technical specifications of RescueME JSON Data Models

4 Datasets Categorization and Description

This chapter provides an in-depth analysis of the datasets utilised in the project. It categorises the datasets based on their relevance to cultural and natural heritage resilience for the five R-Labscapes and provides detailed descriptions of each dataset. Additionally, it discusses data sources, collection methods, and quality assurance processes, describing how data flows within the digital solutions, including its sources, destinations, formats, transformations, and any data mapping required between different systems or components.

4.1 Methodology for Data Description: The Data Mapping Form (DMF)

Within the RescueME project, ST3.1.3 identifies and maps all the actionable data sources, gathering and inserting the key local ones within the Data Lake (T3.3). A first version of this mapping has been delivered at M6 to inform the assessment framework in WP1. The activity started with the analysis of the data sources identified within the SHELTER project [3] and then it progressed with the collection from all partners (both developers and R-Labscapes) of existing available (or to be available) data-related information. In the next phases, an intensive process of information exchange and collaboration with all the partners was needed to reduce the lack of information still present in the vast collection of data. A set of sample data has been also made available through the project repository (Sharepoint) for initial evaluations by the tools' developers. Each dataset was verified and checked and, when needed, updated in coordination to the partner who provided the initial information.

To achieve its objectives, RescueME must deal with miscellaneous data products with quite different features (spatial and temporal resolution, scale, time-range...), ownerships, and usage restrictions. Such a degree of complexity makes it necessary to implement a rigorous methodology for metadata collection, so that none of the four FAIR principles [1] are affected. For this reason, RescueME extends the metadata collection methodology implemented in the SHELTER project. This methodology consists of the use of a data

description template, namely the Data Mapping Form (DMF) (see Annex I for a preview), an excel file, where all the information needed to describe the data is collected.

The SHELTER DMF has been updated to reflect the RescueME project requirements. Table 24 represents the RescueME DMF template version at the time of writing the present deliverable:

FIELD	DESCRIPTION								
	Dataset unique identifier:								
ID	- First digit = WP								
	- Second digit = Task								
	- Last 3 digits = progressive number								
Description	Short description of the dataset								
	Existing = datasets existing before the start of the project								
Existing/Foreseen data	Foreseen = either for future release of the same datasets or								
	for data that is planned to be generated								
Туре	Structured, semi-structured, unstructured or new								
Туре	generation big data								
ют	Data derived from IoT sources								
Format	Data format								
Size	Size occupied by the dataset when stored (total data size or								
	size relative to 1 year of data)								
Time coverage	The available data time range								
Area coverage	Data geographic extension								
Spatial resolution/scale	Data spatial resolution (for raster) or scale (for vector)								
Tomporal recolution	The amount of time needed to revisit and acquire data for								
Temporal resolution	the exact same location								
Update frequency	How often the data is updated								
License	License type (e.g. Creative Commons)								
Ownership/author	Data ownership/author								
Access mode	Data access type								
Access restrictions	Info about data accessibility (with or without restrictions								
Access restrictions	from copyright, patents or other mechanisms of control)								
Access links	Link to websites/portals providing data access								
Metadata	Metadata standards								
Application field	Data domain/filed application								
Hazard type	Hazard to which the data is related								
DRM phase	DRM phase for which the data is useful								
Comments	Any relevant comments								
Data example	Link to the data example								

Data examples download	The partner downloading the data example for the first time							
Indicator ID	Unique identifier of the related indicator							
Indicator calculation	Description of the method used to retrieve the related							
method	indicator							
Madula	The RescueME module that is going to import the described							
Module	dataset							

Table 24 - RescueME Data Mapping Form template

The detailed and structured description of the data collected and shared within the project represents the basis to design, implement and integrate the tools and solutions that will result from WP1, WP2 and WP3. Each tool developer can in fact take advantage of the DMF to analyze the different data sources and to learn about their possible use for the solutions to develop. Thanks to the information collected through the 'Spatial resolution/scale' field, for example, the datasets can be considered relevant for the Geospatial Data Intelligent Platform (TL05_DRAXIS-A) if categorised as 'Local data' or they can instead feed the ATLAS (TL00_TEC-A) if their scale is at European level.

Similarly, knowing the data format upfront allows the RescueME tools' designers to plan for any necessary transformations or conversions to ensure compatibility with other tools or systems. The available time range of the data is essential for temporal analysis as it helps in determining if historical data is available for trend analysis, forecasting, or training predictive models (e.g., Mapping Models - TL08_LINKS-F).

Moreover, understanding the data access mode (e.g., batch processing, streaming, real-time API) is crucial for the RescueME tool developers for designing an efficient data retrieval mechanism, as it influences decisions regarding data storage as well as data retrieval algorithms.

The following section describes the methodology used to perform a preliminary matching of the datasets described through the DMF with the indicators identified within Task 1.1.

4.2 Data Categorization and Data Matching with Indicators

When writing the present document, almost 300 datasets/products were mapped, described through the DMF, checked and are currently under verification. Next, to identify the data and sources more relevant for the R-Labscapes, a mapping procedure was performed towards a prioritised list of resilience indicators (from T1.1) and it will continue until M18.

The groundwork for this mapping activity is represented by the Actionable RHL framework designed within T1.1 that works as a metric system for measuring resilience across different CLs (see D1.1 - Actionable Resilient Historic Landscape Framework [2]). Given that indicators

have been developed with both European and local levels in mind, the present document includes descriptions of data at both scales, with particular focus on the data mapping for the ATLAS and the preliminary list of data selected at local scale by each R-Labscape.

During the next phases of the project, the WP1 will be focused on the definition of the different impact models for the R-Labscapes considering the specific hazards which characterise them and designing the final list of indicators. For this reason, the above-mentioned datasets/indicators matching represents just a preliminary activity to set the design and requirements for the implementation of the different solutions.

Starting from the initial set of indicators identified within T1.1 and the datasets described through the DMF in ST3.1.3, a new spreadsheet has been implemented to perform the abovementioned datasets/indicators matching (see Figure 21 for a preview of the table, the corresponding excel file is delivered in a compressed folder with the present document)

													NUTS1						ELA - Nole Algelou				
													NUTSE			ITC - Northwest Rely	DDE - Hamourg	E332 - Verenden	1015	HRD - Oraelia HRDS - Adriatic			
													N/TSR			intā - Līguria	DEND - Hamburg		EL43 - Crete	Croatia HADS3 - 2eder			
													100120			POST POST	DEBOG-Hamburg HAM	ESS28 - Valencia UNV	EL433 - Aethymno IDEON	County 2404A			
																(1104)	(06490)	15823	(0.433)	percita 1			
1		LABSCAPE EVALUATION Meaningful & Feesible	01	INDICATORS DEFINITION	SHORTLIST	MATCHED	DATABET ID / LINK	AUTHOR	LEVEL	T00L(8)	REPOLUTION	TIMEFRAME	NUTS LEVEL	CANDIDATE BEST VISUALIZATION OPTION	IT4.2.1 QUESTIONS	Landsides and floods extreme, heavy rains and changing climate patterns	"too much weter", pollution	Nick of changes in the precipitation patterns	Heathwaves: droughts	Earthquake, fires, sea level fise, ficods; Heat waves			
		Teacilite													Within your cultural								
9		780	•	Population Density	YES	465	bilger/let.europa.eu/eurontel/latencreaser/idea/lock/20140_8_08 2014outom_17902112/oostman/hostef/augmentionalment gestated/201514/doceaser/activations	74.5	European	Atles, Geospetiel Dif		1990-2022	3	Vector	Innocepe, what is the population growth rate occrease? (Not sure, 5- 20%, 20-40%, 40-60%, 60 80%, 50-100%, Not applicable)				•	1			
9	u.	YES	a	Population change	YES	YES	https://ec.europe.eu/eurostet/statistics; zupaines/index.oto/tites/topumion_and_population_stange_ datistical#opulation_stange_at_netSona_level	71.1	European	40M		2000-2122	3	Graph			1			÷.,			
1.9	1.4	YED	5	Land cover charge	YES	780	35334	95	European	Aties, Geospetial DIP		2012-2018	2	Rater		1							
19	1.2	YES	12	Tourist accomodation capacity	YED	783	12203	OWCE	European	Atias		1990-2011	3	dinph.									
							12104	ma	European	Attal, Geospatia: DIP		2022	N/A		what is the percentage	40-60%	80-600%	o-ach	40-60%	0-20%			
				Quality of natural landscape based on Natura 2000			35363	96	turopean	Atias, Geospetial Diff		2017-2018	N/A		share of Nature 2000 sites within the NUTS2 or	,							
2.0		YES	14	Coarty of Nature Landscape bases on Nature 2000 Sites	785	785	31894	96	turopean	Acteo, Geospetial Diff		2010-2019	N/A	Vector	NUTS3 region? MULTIPLE CHOICE: Not Sure, 0-30% 20-42%, 40-60%, 40-80%, 80-100%, Not appricable.								
	u.	YES	23	Land Uses, Patients, Ouslers	185	983	35333	95	European	Aties, Geospetial DIP		2017-2018	2	factor									
																				1			
u		YES	н	Dute of products (and use, population, street intes)	480	483	40	483	485		55	European	Atlac, Geospatial Dif		2017-2019	N/A.	vetar	To what extent do you use Opermicus data or other source of data in your land planning processes? Ranking train "Lrd (with L indicating no data is used, and 3 indicating nign level, has sure, hot applicable		пот Аррісвон	•		NOT SUM
							31301	55	European	Ates, Geospetial Dif		2012-2019	N/A	Vector]							
z.	20	YES	ц	Affected which live to an externe event	182	463		25	European	Attas, decapatian Dif		2012-2019	N/A.	vedar	outurel landscape, when an extreme events happend? If yes, please	esch municipality has a chil protection pare, esch municipality sizo providez for atoreme post-want chests and equips haef descts and equips haef descts and equips haef to contain emergencies	Currently not evaluate for	s in the Regional Views ² - vior gas m/vior/ you can see the first ocurred from the floods scurred, the floods scurred, for earnys, the have skilled the max skilled the same same same same same same same same	of Region of Crete: https://gis.orgia.go				
							30304	95	European	Aties, Geospetial		2022	N/A			1							
- 14	1.6	YED	36	Tooophohy	YED	780	3:338	55	European	DIP Atles, Geospetial		February 2015-present	N/A	Rater	<u> </u>					1.1			
			-					UNC		A deinestion,		N/A	N/A				*						
1.5	1.6	YES	34	Food delineation	YES	980	33120		European	Geospetial DrP				Rater						1.1			
							35322	55	European	Atea, Geospetas DiP		2012-2019	N/A										
u u	2.0	YES	28	Dages if visionation Taurism Canying Casacity	40 10	10		PhG	Local	Atte: Georgedial DIP		3011-2013	N/A	Graph	Is there a designated carrying objectly (or maximum number) for sourcest if not applicable or not available, please spectly.	here is a duly, but not a nambelon, number applicable	Peny mex. 489 (258 in eldbin) Horse Cerrege: mex 200 (mex 112 guestio be manana), 208 to be Island)	Taxesteal	No. example	The number of monto it stout 2000, the number of betts is stout 20000			
u	1.0	YES	42	Duffice cultivited with integraps	780	485	3.602	95	LICH	Attas, Geospatian Dif		2006-2023	3	Vector	In your cultural landocape, what percentage of surface is outwated with vineyants? MULTIPLE CHCICE INST SUR, 9-201, 20-40%, 40-40%, 40-80%, 80-580%, Net applicable	2-47	ны Арріском	Not Applease	0-20%	oath			
2	3	YES	43	Durface curtivated with silve trees	780	YES		95	Loos	Georgetik DrP		2006-2023	,	Vedar	In your cultural anducape, what percentage of surface is culturated what have been? AUCTIVE CHOICE: Not Sure, 0-25% 20-45%, 40-45%, 40-45% 80-530%, Not applicable	20405	Net Applicate	0.27%	4345h	Not sure			

Figure 21 - Spreadsheet elaborated to match the datasets described in the RescueME DMF and the set of resilience indicators from T1.1

Such a spreadsheet includes several information retrieved from D1.1 – Actionable Resilient Historic Landscape [2], such as:

- The results of the **RACER assessment** performed by two different evaluators: to check and assess the appropriateness of resilience indicators, the RACER (relevant, accepted, credible, easy and robust) criteria were selected, as a framework used to assess the soundness of scientific tools for their use in policy making [26].
- The **R-Labscapes evaluation**: to pursue a GLOCAL strategy (based on both Global and Local factors), as well as top-down and bottom-up approaches, the R-Labscapes have been asked to assess the meaningfulness and feasibility of the indicators in their specific locations, considering their type of landscapes and their challenges.
- The selection of **shortlisted indicators** (including their ID and names): both the RACER criteria framework and the R-Labscapes assessment were considered to select indicators, according to a certain number of principles (see D1.1 [2], section 1.10, page 50 for more details).
- The geographical level at which the data are available: European or local level (see D1.1 [2], Table 15, page 73 for more details)

The spreadsheet also contains the following fields inherited from the DMF:

- **Dataset ID/LINK**, containing the dataset ID or, alternatively, the link to access the dataset, in case this was identified (and already matched) within T1.1.
- **Tool(s)**, used to perform a preliminary analysis of the tools that will possibly expose the related indicator.
- **Resolution**, to report the spatial resolution of the data.
- **Time frame**, indicating the time frame at which the datasets are available.

In addition, the field '*ST4.2.1 questions*' contains inputs from ST4.2.1 (Local resilience baseline assessments for each R-Labscape), where the resilience baseline assessment, based on the RescueME indicator framework, aimed at evaluating local resilience by gathering and analyzing local data through a questionnaire answered by the R-Labscapes. Finally, the following fields have been included to effectively describe how data should flow within the different digital solutions:

- **NUTS level** [27], indicating the Nomenclature of Territorial Units for Statistics (NUTS) for each dataset, which allows to categorise the different datasets (and the related matched indicators) according to this European standard.
- **Candidate best visualization option**, which contains a proposal in terms of how each indicator could be displayed through the tool that is going to expose it, considering 4 different options: raster, vector, stats, or graph. Following the criteria according to which the different visualization options have been assigned:
 - **Raster**: most of the indicators containing this option are matching datasets that are available in raster format.

- Vector: most of the indicators containing this option contain a geographical component in their definitions (e.g.: ID 34 - Affected areas due to an extreme event).
- **Graph**: this option is preferred whenever the indicator implies the use of a data time-series. Since this information is not available yet (at least not for all the indicators), an analysis of the '*Unit*' field in the list of resilience indicators (available in Annex III of D1.1 [2]) has been performed to go more in details of each indicator features (e.g.: it is expected to visualise a graph for the indicators that are expressed in %).
- **Stats**: if no data time-series are available, this is considered the best option, but, again, being this information not yet available, the value '*Stats*' has been assigned to the indicators that are expressed as numbers in the above-mentioned '*Unit*' field.

The choice between the 2 last options mainly depends on the temporal resolution assigned to each indicator: if a certain indicator must be calculated over a single year, visualizing it through a graph option would be less significant, unless there are different variables to associate with the indicator value, such as different regions, or further parameters.

In the context of the Actionable Resilient Historic Landscape framework defined earlier in the project, indicators were defined at European as well as at local level to describe CLs as socio-economic-technical system (SETS). Following more details are provided for what concerns the datasets selected at each scale.

4.2.1 Data at Local Scale

As already described in the previous sections, WP1 activities aim at developing predictive impact assessment models that could be linked with specific resilience measures and indicators. When writing the present deliverable, the RHL framework was delivered with a short list of indicators. T1.3 will deepen these concepts and provide a specific quantification in the R-Labscapes context, to better address specificities in data availability and overall context. For its objectives, T1.3 requires input and interactions with T1.1, for what concerns the list of indicators, and T4.2, for the local impact chains and local resilience assessment (see D4.3 - Local Resilience Baseline and Local Impact Chains for R-Labscapes [24]). ST3.1.3 role is to support WP1 partners in the preliminary identification of useful data. For this reason, several bi-lateral meetings with the five R-Labscape referents have been held and the result of such interactions is summarised in Annex II, where a list of datasets (and their attributes) considered useful for each R-Labscape is reported as a subset of the data described through the DMF.

This data also includes any R-Labscape local sensor data that may be available, including IoT data.

The interactions with the R-Labscapes have been iterated also for collecting each R-Labscape's area of interest, represented by a preliminary area that is going to be updated in the coming period.

The following subsections summarise the different hazards and fields of exposure for each R-Labscape as derived from the analysis performed within T4.2 (for more details see D4.3 - Local Resilience Baseline and Local Impact Chains for R-Labscapes [24]) and identify a preliminary list of data sources and datasets considered useful for T1.3 objectives.

The areas of interest reported for each R-Labscape derive from the first round of interactions. Their updated version (which should represent a higher resolution for developing the predictive impact assessment models in T1.3) is not available yet at the time of writing the present deliverable.

PSILORITIS

The area of the Eastern Mediterranean, where the island of Crete is located, is expected to suffer more from the effects of climate change than any other region in Europe. Heatwaves and rising temperatures, intensified by other factors such as water shortages, will threaten all economic and productive activities in the area, the health of residents and visitors, and the social cohesion and cultural continuity in this area. For these reasons, the focus of this R-Labscape is mainly towards heatwaves and temperature rise, with agriculture and tourism representing the most exposed fields.

Figure 22 shows the area of interest identified for this R-Labscape in the RescueME framework:

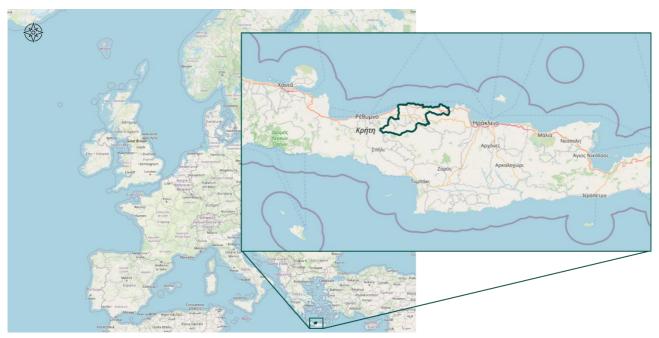


Figure 22 – Psiloritis R.Labscape area of interest for RescueME

To best monitor these two fields, the following data sources have been selected by the Psiloritis R-Labscape referent:

- Crete Geospatial Information Portal [28], from which many of the datasets described in Annex II are available as well as the following web applications:
 - Sentinel Hub Playground [29]
 - Longitudinal Image Comparison Application for Sentinel images [30]
 - Crete EO Browser [31]
- Psiloritis Geopark WebGIS App [32]

NEUWERK

The islands of Neuwerk, Scharhörn and Nigehörn and their surrounding tidal flats (constituting the area of the Hamburg Wadden Sea National Park) are exposed to the impacts of a climate change-related sea level rise as well as the increase in the occurrence and intensity of severe coastal storm events within the southern German Bight. Sea level rise poses a significant hazard to the Wadden Sea as it can lead to more and longer periods of coastal flooding of the foreshore areas. An increase in the water level together with a severe storm event can undermine the structural integrity of the coastal defense systems: rock revetments, wooden seawalls and a ring dyke that surrounds the buildings of the island of Neuwerk and the grazing areas. The islands of Scharhörn and Nigehörn are protected bird sanctuaries and are therefore uninhabited (apart from the bird warden on Scharhörn) while the island of Neuwerk has a small number of permanent residents and non-resident employees from the mainland. Considering these aspects, the focus of this R-Labscape is mainly towards the risk of "too much water" (considering both storm surge and sea level rise) and of pollution (e.g., oil spill). The exposure systems analyzed within T4.2 include: people, tourism, ecologically significant areas on Neuwerk, accessibility of the island, general flora and fauna, different infrastructure types, other systems such as the waterbody and the tidal flats, and the different economic sectors (tourism, shipping, use of pasture).

Figure 23 shows the area of interest identified for this R-Labscape in the RescueME framework:

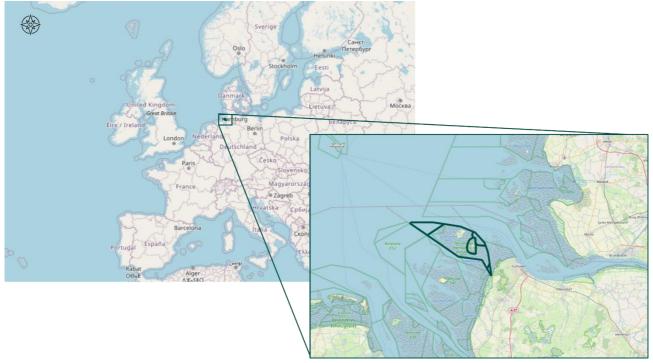


Figure 23 - Neuwerk R-Labscape area of interest for RescueME

The main data source for this R-Lascape are:

- the Hamburg Geoportal [33]
- EasyGSH-DB [34]

PORTOVENERE, CINQUE TERRE AND THE ISLANDS

Various parts of this UNESCO site are susceptible to slope and soil instability with dormant or active landslides widely present in the area. In addition to an increase in the amount of rain, deforestation and fires are also a cause for landslides. The climatic characteristics and the annual distribution of rainfall contribute to the increase in vulnerability of the territory. Human activity can also cause landslides: the alteration of areas by humans, often without prior consideration of the environment, can lead to land subsidence; in addition, the abandonment of agricultural activities and the deterioration and collapse of dry-stone walls can increase the vulnerability of the area. Consequently, agriculture, cultural heritage, people, and infrastructures are here the main exposure systems under observation.

Figure 24 shows the area of interest identified for this R-Labscape in the RescueME framework:

Figure 24 - Portovenere, Cinque Terre and the Islands R-Labscape area of interest for RescueME

Thanks to the knowledge built through several previous UNESCO projects (Management Plans, Disaster Risk Management Plan, several analyses on the territory, etc.) where LINKS was involved in, this R-Lascape is particularly advanced in terms of data availability and risk analysis, and for this reason it has been selected as the first area to be used for the tools' implementation. Moreover, this R-Labscape has shown interest in most of the solutions proposed by the technical partners.

This will allow on one side to start testing the different tools on a more mature system and on the other side to give the other R-Lascapes the necessary time to align themselves in the data retrieval process.

The following data sources have been selected as relevant for the scope of this R-Labscapes:

- Liguria Region Geoportal [35]
- Appennino Settentrionale Geodataserver [36]

L'HORTA DE VALÈNCIA

Drought periods getting longer, precipitation events occurring at various times than previously known and getting more extreme at the same time represent changes in the climate patterns that strongly impact this R-Labscape. Consequently, there is the risk of abandonment of agricultural and fishing activities which is a non-climatic hazard depending on urban expansion of the Valencia city, the expansion of urban infrastructures, as well as

90 – RescueMe – D3.1 TECHNICAL SPECIFICATIONS AND DATA MAPPING. – 16/07/20244

the enlargement of the port infrastructures. Therefore, the exposure systems analyzed within T4.2 for this R-Labscape include cultural heritage, economic sectors, ecosystem services, infrastructure, soils, biodiversity, agriculture and fishery activities, as well as built environment.

Figure 25 shows the area of interest identified for this R-Labscape in the RescueME framework:

Figure 25 - L'Horta de Valencia R-Labscape area of interest for RescueME

The main data source for this R-Labscape are:

- Portal de Datos Abiertos del Ayuntamiento de València [37]
- IDEV (Infraestructura Valenciana de Dades Espacials) [38]
- Portal de Datos Abiertos de la Generalitat Valenciana [39]

ZADAR

Due to the climate and geographical position of the City of Zadar, heat waves are the most significant hazard that negatively affects various aspects of the local area – such as cultural heritage, tourism, agriculture, health of the residents etc. In recent years, the City of Zadar has faced an increase in periods of extreme heat waves during the summer season.

Pluvial flooding and storm surge events represent the second largest hazards that negatively impact the local area and the life of both residents and tourists, as well as cultural heritage and agriculture. Extreme storms, which occur regularly in the Zadar region, pose a particularly high risk as they consist of extreme wind speeds and heavy rainfall events that cause flooding.

For these reasons, the exposure systems collected within this R-Labscape are people, cultural heritage, buildings, ecosystems, infrastructure, business sectors (agriculture, tourism), and economy.

Figure 26 shows the area of interest identified for this R-Labscape in the RescueME framework:

Figure 26 - Zadar R-Labscape area of interest for RescueME

The following data sources are considered useful for this R-Labscape:

- Geoportal kulturnih dobara [40]
- Croatian Meteorological and Hydrological Service [41]
- Bioportal [42]

4.2.2 Data at European Scale

By using indicators suitable for European scale identified in T1.1, T1.2 has conducted a risk assessment of the coastal landscapes across Europe, aligning it with climate scenarios. Within this task, data was collected for 513 European coastal NUTS3 regions. Subsequently, based on the work in T1.1, data on the identified indicators on the European NUTS3 level was gathered and processed. In addition, data on hazards and exposure was collected and processed. Among the most used data sources there are:

- EUROSTAT [43]
- Several services from the Copernicus Programme [18]:
 - Copernicus Land Monitoring Service (CLMS) [44]
 - Copernicus Atmosphere Monitoring Service (CAMS) [45]
 - Copernicus Climate Data Store (CDS) [46]

- Joint Research Center (JRC) [47]:
 - INCA Platform [48]
 - European Soil Data Centre [49]
 - Cultural gems [50]
 - Data Catalogue [51]
- German Aerospace Centre: Global Urban Footprint (GUF) [52]
- European Environment Agency (EEA) [53]
- European Commission Culture and Creativity [54]
- OpenStreetMap ® (OSM) [55]
- UNESCO World Heritage Convention [56]

Data processing involved filling data gaps with older data, ensuring backward compatibility of EUROSTAT [43] data in case of adjustments of the delineation of the NUTS3 regions, mapping NUTS2 data on NUTS3 level in case of data only available at a higher level, GIS-analysis of satellite-born data including Copernicus data, analysis of climate data for the reference period and the future scenarios and providing the respective information for the DMF (T3.1).

Based on the above-mentioned data processing activity, in total 130 indicators have been made available at NUTS3 level. The list of datasets used as input to calculate such indicators is available in Annex III.

4.2.3 New Data

When writing the present document, the following tools are expected to generate new data for the scope of the project:

- The Generative AI tool, which generates artworks related to and representing R-Labscapes, taking as input the data generated from the Social Media module and/or from the users' interactions with the AR application, as well as from the weather data available for each R-Labscape.
- The Mapping Models tool, that generates delineation maps from Copernicus data preand post- events, namely floods, wildfires and landslides. The tool itself can also be applied to get information about land cover-related scenarios.
- The Chatbot, as a crowdsourcing tool, which allows the users to create geolocated reports containing textual descriptions, multimedia objects (videos, photos, voice messages) and optionally additional details, so to gather useful information from the field.
- The Social Media module, that collects, extracts and analyzes relevant social media content from various platforms; it generates new data about the characterization of specific and categorised cultural heritage assets, and the related underlying themes and topics discussed on the platforms, so to provide a comprehensive picture of public engagement with the R-Labscape's cultural heritage

In addition, TECNALIA has developed several indexes which can be considered as new data generated within the project. The access to such data is restricted but they are made available through the ATLAS web interface, together with the above-mentioned indicators that T1.2 has used to perform the risk assessment of the coastal landscapes across Europe. The list of indexes generated by TECNALIA is available in Annex IV.

Annex V contains a non-comprehensive list of data examples that are going to be generated by RescueME.

5 Natural Language Processing (NLP) for heritage characterization

Within ST3.1.3 a review of existing methodologies based on Natural Language Processing (NLP) was performed to identify innovative ways to characterise heritage values. One of the big challenges has been to identify structured databases with enough information to train a model for these purposes. After evaluating the possibilities collected in the DMF regarding the local databases, it has been decided to use the Official World Heritage List (WHL) from UNESCO [56] for its universal acceptance and the clarity of the criteria. To be included on the WHL, sites must possess outstanding universal value and meet at least one of ten specific selection criteria. The criteria include representing a masterpiece of human creative genius, demonstrating a significant interchange of human values, providing exceptional testimony to a cultural tradition or civilization, exemplifying a significant stage in human history through architecture or landscape, showcasing traditional human settlement or land use, and being associated with events or traditions of outstanding universal significance.

The first step was to meticulously analyse and structure the information contained in the database to facilitate further analysis. Utilising a sophisticated model, heritage-related statements have been successfully detected and classified within the available information. Additionally, another model was used to conduct sentiment analysis on those identified heritage-related statements. The WHL descriptions were used to correlate site descriptions with World Heritage criteria, employing NLP to discern the relationship between specific words and these criteria. Ultimately, an NLP model has been developed capable of automatically classifying or assigning heritage criteria to new heritage items.

This effort is related to the exercise developed in WP1 regarding an NLP-based solution for the automatic retrieval of keywords from cultural heritage canonical texts that was already explained in D1.1 - Actionable Resilient Historic Landscape Framework [2].

5.1 State of the art

There is a limited amount of literature available on this topic: Sporleder's work (2010) [57] is one of the earliest approaches to NLP in the domain of CH. They highlight that corpora are traditionally "*pen-and-paper businesses*" entirely coded by hand, which makes information extraction a difficult task (not referring to NLP's IE).

In the data and metadata section, they refer to three types of data:

- Primary data: in the context of CH, these are the objects in a collection, such as archaeological excavations, manuscripts, audio recordings, books, etc.
- Secondary data or metadata: In CH, metadata constitutes all information providing context about a collection object, such as library catalogs.
- Metadata can be generated automatically through computerized systems or created manually by humans. From a technological standpoint, this work is outdated. It deals with tasks like IE, ER, etc., but with techniques that have been largely surpassed. At a glance, I was unable to recognise any referenced dataset.

On the other hand, Bai, Luo, Nourian, and Pereira Roders' work (2021) [58] is closer to what we are seeking in RescueME. Their main research focus centers on:

- Assisting in the inscription process in the WHL by checking the coherence and consistency of the Statements of Outstanding Universal Value (SOUV), and
- Identifying heritage values through multiple data sources (e.g., social networks).

More specifically, in their work, they propose a classifier that establishes the relationship between a natural language sentence and one of the 10 criteria used in constructing the WHL. This dataset is interesting for the RescueME objectives, as it contains "object"/"description" pairs that can be used to train a generative model.

5.2 Preliminary steps

As a preliminary step, various pieces of information related to heritage were collected from multiple documents containing free text. The information within these documents was pre-processed to extract and format the relevant textual data.

Initially, a *distilbert-base-uncased* model [59], based on Bidirectional Encoder Representations from Transformers (BERT) architecture [60], fine-tuned with heritagespecific data, was employed to perform sequence classification tasks. This model's primary use was to classify sentences as either pertaining to heritage or not. This step ensured that only relevant heritage-related sentences were identified for further analysis.

In the subsequent step, the sentences classified as heritage-related were processed using a second model to perform sentiment analysis. For this secondary task, we utilised the *twitter-roberta-base-sentiment-latest* model [61], which is based on the RoBERTa architecture [62] and trained on a Twitter dataset tailored for sentiment analysis. This model was selected for its robustness in analyzing the sentiment conveyed in the text, enabling to classify the heritage-related sentences according to their sentiment.

By combining these two models, the research aims to not only identify heritage-related content but also understand the sentiment associated with it. This dual approach enhances the capability to analyze and interpret heritage texts, providing valuable insights into the emotional undertones present in such documents. The integration of these models facilitates a comprehensive analysis, ensuring that both the relevance and sentiment of the content are accurately captured and categorised.

Figure 27 illustrates the process by which sentences are identified as either heritage-related or non-heritage-related and subsequently classified based on their sentiment analysis.

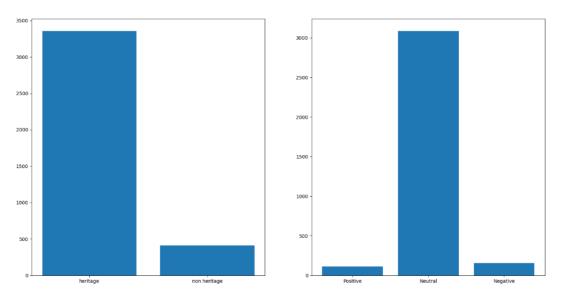


Figure 27 - Process by which sentences are identified by the RescueME NLP model

5.3 Characterizing heritage values through canonical texts

Understanding what constitutes CH is a challenging task, even for humans, and even more so for computerised systems. One way to discover the characteristics of items considered CH is to examine the context in which they appear and cast it as a probabilistic framework.

Certain approaches prove particularly appealing for automatically retrieving key words from a given corpus.

Keywords, also referred to as salient words are typically defined as a set of words that summarise or characterise the content of a document. From a mathematical perspective, however, keywords can be seen as the set of words that appear in high frequencies in a small set of documents and low frequencies across a corpus comprising n documents.

In the context of CH, keywords may provide insights into the decision-making process established by a document for considering an item as CH or not. In this sense, this task aims to explore the ability of certain NLP approaches to extract keywords for the CH domain.

On the one hand, a small corpus consisting of 31 documents[†] considered as canonical for CH field has been created. These documents have been processed to extract clean text prior to passing it through the processing pipeline. The pipeline consists of three keyword retrieval methods. To establish a baseline, tf-idf has been used to rank words using the mathematical formalization described above. It is a completely token-based probabilistic approach widely used in many information retrieval systems. Lemmatization has been employed to infer the base form of tokens prior to executing tf-idf.

However, tf-idf lacks the lexical-semantic information encoded in the actual sentences. Representation learning techniques have been then utilised to embed word tokens in a latent space that captures lexical-semantic information. Typically, encoder architectures such as BERT-based models [60] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019) are used for this task. They model the representations of words according to the distributional hypothesis and can weigh the token representations according to the context in which they appear. "Keybert" has been used for ranking the representations. Keybert uses cosine similarity to rank the embeddings of n-gram word/phrases against the embeddings of documents. The top n-grams are then selected as keywords.

5.4 Characterizing heritage values through UNESCO's WHL

UNESCO's word heritage list is a first-class information resource for CH that can be used as corpus for several NLP tasks. UNESCO offers a pre-processed "whc-sites-2023" dataset consisting of sites names, descriptions, justifications, locations, and matching criteria in

[†] See D1.1 - Actionable Resilient Historic Landscape Framework [2] for more details about the selected texts

natural language. With the goal of studying the capabilities of off-the-self language models in the CH domain, two methods have been developed to map from sites descriptions into criteria. The first approach learns a classifier from representations from encoders, whilst the second one leverages generative pretrained transformers [63] to do the tasks by using incontext learning.

5.4.1 Encoders

To map descriptions to criteria by using encoders, the roberta-large model will be employed [62], an advanced variant of the model [60], designed for NLP tasks. This model will be repurposed for sequence classification tasks by training it with the information from the UNESCO file. Specifically, the model's architecture will be slightly modified by adding a classification layer and fine-tuning its parameters to ensure that the descriptions result in the appropriate categories.

Through this approach, when a free-text description is input, the model will produce a set of categories that accurately reflects the content and characteristics of the text. This method leverages the robust capabilities of roberta-large to understand and classify complex textual data, enhancing the precision and utility of heritage site categorization based on detailed descriptions. By utilizing this advanced model, RescueME aims to improve the efficiency and accuracy of categorizing heritage information, thus contributing to more effective data management and analysis in the field of CH.

Figure 28 illustrates the performance of the NLP model in correlating descriptions with World Heritage (WH) criteria. The achieved F1 score of 72% reflects the model's capability to effectively classify free-text descriptions according to the specified WH criteria. This level of accuracy suggests that the model is robust in handling various types of textual data and can reliably identify the relevant heritage criteria from the descriptions provided. Furthermore, it indicates significant progress in the application of advanced NLP techniques for CH management and underscores the potential for further refinement and optimization.

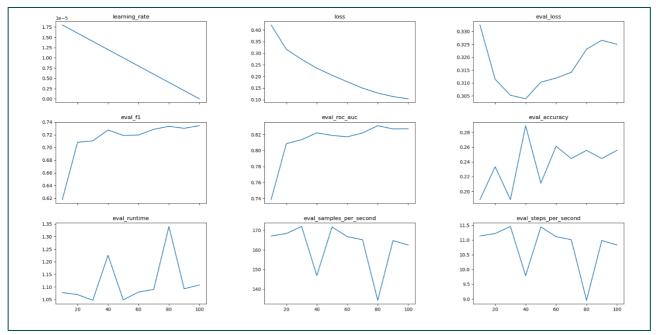


Figure 28 - Performance of the RescueME NLP model

Overall, these results highlight the promising capabilities of NLP models and techniques in enhancing the categorization and analysis of heritage data. The ability to accurately and efficiently classify heritage-related information is crucial for effective heritage documentation and preservation efforts. The findings suggest that with continued development and fine-tuning, such models can play a pivotal role in automating and improving the management of CH information. This advancement not only aids in the preservation of historical and cultural assets but also facilitates more comprehensive and accessible heritage records for future research and public engagement.

5.4.2 In-context learning

Opposite to encoders, where parameters are learned via fine-tuning over the UNESCO dataset, the use of generative models (large language models - LLMs) has also been explored to perform the same task by using in-context learning.

More in detail, in-context learning is a technique that essentially modifies the output distribution of tokens of language models by inserting context as input to the model. Typically, when using instruction-tuned models (such as Llama, Gemini, PHI, or even OpenAI's GPT models), the context is a set of instructions or prompts that model the desired task the language model should perform. One positive aspect of this approach is that it does not require changing the model's parameters, since no active learning is performed. This means that there is no need for a labeled dataset to train the model, since the context is

sufficient to model the task. However, the performance of the model is highly sensitive to the quality of the context and to the corpus it was pre-trained on.

Currently, some LLMs are proficient in several NLU tasks, as reported by the Massive Multitask Language Understanding (MMLU) benchmark. Although MMLU does not specifically target the CH domain, it is arguably a good indicator of the capabilities of LLMs in general. Nowadays, Llama-3 variants and Qwen constitute one of the best alternatives in terms of performance and parameter size as far as public models are concerned.

To provide the context to the model, a combined n-shot and chain of thought approach has been followed. On the one hand, n-shot templating, a generalization of few-shot templating with n examples, is a technique that allows the model to learn from a set of examples. In this case, the UNESCO dataset has been used to provide the model with examples of descriptions and their corresponding criteria. On the other hand, a chain of thought has been used to force the model to generate justification when a criterion is matched. This is done by chaining the criterion with the description, so that the model can generate the justification in a single pass.

Overall, the context consists of the following elements: the site name, the description, and one of the 10 criteria to be matched. Then the model is prompted to justify if the item matches the criterion or not by generating a justification based on the provided description and its internal knowledge of the site. The context also includes examples of other sites matching the same criterion, so that the model easily understands the task to be performed.

Experiments were conducted with the Llama3-8b, Llama3-70b, and Qwen-1.5-70b models, using different n-shot settings (5, 2, and 10). The results were measured in terms of F1-score, precision, and recall across 10 criteria (C1 to C6 and N7 to N10).

Qwen, with 5-shot learning, achieved an overall micro-avg f1-score of 0.57, macro-avg f1-score of 0.59, and weighted-avg f1-score of 0.62. LLaMA3-8b, with 5-shot learning, performed better with a micro-avg f1-score of 0.62, macro-avg f1-score of 0.61, and weighted-avg f1-score of 0.65. The precision and recall scores were generally consistent across models and n-shot settings, with some variations in individual criteria.

Overall, the performance did not vary between models and the number of examples provided (n-shot). Upon further analysis, it has been observed that the models struggled with criteria that required more nuanced understanding of the site's cultural significance and historical context. Also, the models' tendency to match the criterion with only the short description provided, rather than considering the internal knowledge of the site. In case the description was not broad enough, the model would often reply that the given description is not enough

to determine if the site matches the criterion or not. Finally, we observed that all models present a high recall and moderate precision, suggesting that few-shot learning is biasing the models towards predicting that a given site matches the criterion.

These problems could be addressed by: 1) providing longer descriptions to the model (they are available on their website, but they were not provided in the public dataset), to prevent the model from relying solely on the short description, and 2) including examples where the site does not match the criterion and a corresponding justification, to prevent biasing the model towards predicting that a site matches the criterion. This will balance the recall in favor of precision.

5.5 Outcome

In conclusion, LLMs can be used to perform the task of matching descriptions to criteria in the CH domain with a moderate level of success.

On the one hand, it is possible to use pretrained encoders such as BERT to perform multiclass classification given a limited amount of data. As they have been pretrained on general text on the Masked Language Model objective, they need to be fine-tuned for this specific task. On the other hand, generative LLMs can perform any general domain task by providing the right context without the need of fine-tuning its parameters (in-context learning). However, the models' performance is highly dependent on the few-shot learning configuration, the quality of the context provided, as well as the pretraining and instruction tuning corpora. These experiments suggest that fine-tuning an encoder model is a more reliable and robust approach for this task as compared to the latest generative LLMs (qwen 80B, llama3-8B, llama3-70B), although generalization to other domains outside the world heritage list may be limited. It is likely that future LLMs with higher capabilities would outperform encoders.

Moreover, ethical considerations must be considered when deploying these models. The potential biases in pretrained models can lead to skewed results, particularly in culturally sensitive domains. Ensuring the diversity and representativeness of training data is crucial to mitigate these biases. As the field progresses, the development of transparent and explainable models will be essential to foster trust and reliability in AI-driven cultural heritage applications.

In summary, while LLMs show promise in the CH domain, their optimal application requires a balanced approach that leverages both fine-tuning and contextual enhancements. Future advancements in LLM technology, combined with careful attention to ethical and practical considerations, will likely lead to even more effective and equitable solutions for preserving and understanding our CH.

6 Conclusion

The present deliverable aims at collecting all the relevant information useful for supporting the RescueME tools design and implementation as well as the selection of the datasets considered relevant for each R-Labscape objective. Since the information contained in this document reflects the status of the activities at M18 of the project, some changes in both the technical specifications and the data selection are expected.

The interactions between the five R-Labscapes and the technical partners will continue to allow the completion and the optimization of the WP3 tasks.

Starting from the identified use case and technical requirements, the RescueME technical partners will start implementing the different solutions using the Portovenere, Cinque Terre and the Island R-Labscape as initial use case reference to then expand the implementations to the rest of the R-Labscapes. This is because such R-Labscape is particularly advanced in terms of data availability and risk analysis and has shown interest in most of the solutions proposed by the technical partners.

7 References

REF	NAME OF DOCUMENT/LINK
1	Wilkinson, M., Dumontier, M., Aalbersberg, I. et al. The FAIR Guiding Principles
	for scientific data management and stewardship. Sci Data 3, 160018 (2016).
	https://doi.org/10.1038/sdata.2016.18
2	Gandini, A., Egusquiza, A. RescueME D1.1 - Actionable Resilient Historic
	Landscape Framework (2023). Available at:
	https://resilientculturallandscapes.eu/resource?t=D1.1%20ACTIONABLE%20RES
	ILIENT%20HISTORIC%20LANDSCAPE%20FRAMEWORK.
3	SHELTER project funded under the European Union's Horizon 2020 research and
	innovation programme, grant agreement No 821282.
	https://doi.org/10.3030/821282
4	I-REACT project funded under the European Union's Horizon 2020 research and
	innovation programme, grant agreement No 700256.
	https://doi.org/10.3030/700256
5	ResCult project funded by the European Commission DG ECHO under the Call for
	proposals 2016, grant number ECHO/SUB/2016/742499/PREV12.
	https://doi.org/10.1016/j.culher.2024.02.013

6	GEO Data Management Principles Task Force. GEOSS Data Management
	Principles. April 28, 2015.
	https://www.earthobservations.org/documents/dswg/201504_data_manageme
	nt_principles_long_final.pdf
7	European Commission. INSPIRE metadata directive.
	https://inspire.ec.europa.eu/metadata/6541
8	Klose, A., Abajo, B., Lopez de Aguileta, A., Gandini, A., Egusquiza, A., Usobiaga,
	E., Benedito, M., Zubiaga, M., Simon, A., Santangelo, A., Salpina, D., Manojlovic,
	N., Durrant, L. RescueME D1.2 - Atlas of EU Coastal Heritage Landscape
	Typologies and CC Impacts (2024). Available at:
	https://resilientculturallandscapes.eu/resource?t=D1.2:%20ATLAS%20OF%20EU
	%20COASTAL%20HERITAGE%20LANDSCAPE%20TYPOLOGIES%20AND%20CC%2
	OIMPACTS
9	ARCH project funded under the European Union's Horizon 2020 research and
	innovation programme, grant agreement No 820999.
	https://doi.org/10.3030/820999
10	RURITAGE project funded under the European Union's Horizon 2020 research and
	innovation programme, grant agreement No 776465.
	https://doi.org/10.3030/776465
11	CKAN tool.
	https://docs.ckan.org/en/2.9/
12	Azure Blob Storage
	https://azure.microsoft.com/en-us/products/storage/blobs
13	FusionAuth
	https://fusionauth.io/docs/
14	GEOSS standards
	https://old.earthobservations.org/geoss.php
15	ISO 19115 metadata standard
	https://www.iso.org/standard/53798.html
16	CKAN v.2.10.0 2023-02-15 change log
	https://docs.ckan.org/en/2.10/changelog.html#v-2-10-0-2023-02-15
17	Open Geospatial Consortium (OGC) standards
	https://www.ogc.org/standards/
18	
	https://www.copernicus.eu/en
19	GNU General Public License v3 (GPL-3)
	https://www.gnu.org/licenses/gpl-3.0.html
20	Copernicus Emergency Management Service (CEMS)
	https://emergency.copernicus.eu/
21	SentinelHub APIs
	https://www.sentinel-hub.com/develop/api/

	CAFEDO project funded under the Europe of Union la Union 2000 m
22	SAFERS project funded under the European Union's Horizon 2020 research and
	innovation programme, grant agreement No 869353.
	https://doi.org/10.3030/869353
23	WordPress
	https://wordpress.com/de/
24	Wischott, V., Ugalde, I., Pirazán-Palomar, L., Angelone, S., Milde, K., Lückerath,
	D., Klose, A. RescueME D4.3 - Local Resilience Baseline and Local Impact Chains
	for R-Labscapes 🧲
25	ARCH HUB
	https://websites.fraunhofer.de/arch/
26	Eisenmenger, N., Giljum, S., Lutter, S., Marques, A., Theurl, M.C., Pereira, H.M.
	and Tukker, A. (2016), "Towards a conceptual framework for social-ecological
	systems integrating biodiversity and ecosystem services with resource
	efficiency indicators", Sustainability (Switzerland), Vol. 8 No. 3, available at :
	https://doi.org/10.3390/su8030201
27	Nomenclature of Territorial Units for Statistics
	https://en.wikipedia.org/wiki/Nomenclature_of_Territorial_Units_for_Statistics
28	Crete Geospatial Information Portal
	https://gis.crete.gov.gr/sdi/?tab=viewport_maptab&loader=map1_loader_public
	&lon=2762663.5125719⪫=4201151.0570441&zoom=9
29	Sentinel Hub Playground
	https://gis.crete.gov.gr/sdi/modules/sentinelhubmonitoring/monitoring/
30	Longitudinal Image Comparison Application for Sentinel images
	https://gis.crete.gov.gr/sdi/modules/sentinelhubmonitoring/monitoring/#x=27
	45673%2By=4182077%2Bs=12%2Blayers=WILDFIRES-
	RETHYMN0%2Bmaxcc=20%2Bgain=1%2Btime=2024-05-04/2024-06-
	04%2Bmode=compareMode%2Bdate1=2021-07-01%2Bdate2=2022-07-18
31	Crete EO Browser
	https://gis.crete.gov.gr/sdi/eobrowser/?zoom=9⪫=35.30309&lng=24.27045&t
	hemeId=DEFAULT-THEME
32	Psiloritis Geopark WebGIS App
	https://tours.nhmc.uoc.gr/geo/psiloritis/en/
33	Hamburg Geoportal
	https://geoportal-hamburg.de/geo-online/?lng=de
34	EasyGSH-DB
0.	https://trilawatt.eu/daten/datenprodukte/
35	Liguria Region Geoportal
	https://geoportal.regione.liguria.it/catalogo/mappe.html

R Available on the European Commission web portal

36	Appennino Settentrionale Geodataserver
	https://geodataserver.appenninosettentrionale.it/portal/apps/webappviewer/in
	dex.html?id=5df4e2dc9f79431ea89eef064912c45a
37	Portal de Datos Abiertos del Ayuntamiento de València
	https://estadisticavlc2.shinyapps.io/Areas_Vulnerables_2022/
38	IDEV (Infraestructura Valenciana de Dades Espacials)
	https://idev.gva.es/va/
39	Portal de Datos Abiertos de la Generalitat Valenciana
	https://portaldadesobertes.gva.es/es
40	Geoportal kulturnih dobara
	https://geoportal.kulturnadobra.hr/welcome.html?lang=eng#/
41	Croatian Meteorological and Hydrological Service
	https://meteo.hr/index_en.php
42	Bioportal
	http://www.bioportal.hr/
43	EUROSTAT
	https://ec.europa.eu/eurostat/web/main/data/database
44	Copernicus Land Monitoring Service (CLMS)
	https://land.copernicus.eu/en
45	Copernicus Atmosphere Monitoring Service (CAMS)
	https://atmosphere.copernicus.eu/
46	Copernicus Climate Data Store (CDS)
	https://cds.climate.copernicus.eu/#!/home
47	Joint Research Center (JRC)
	https://commission.europa.eu/about-european-commission/departments-and-
	executive-agencies/joint-research-centre_en
48	Joint Research Centre : INCA Platform
	https://ecosystem-accounts.jrc.ec.europa.eu/
49	Joint Research Centre : European Soil Data Centre
	https://esdac.jrc.ec.europa.eu/
50	Joint Research Centre : Cultural gems (© European Union and Cultural gems
	contributors)
	https://cultural-gems.jrc.ec.europa.eu/
51	Joint Research Centre : Data Catalogue
	https://data.jrc.ec.europa.eu/dataset
52	German Aerospace Centre : Global Urban Footprint (GUF)
	https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-9628/16557_read-
	40454/
53	European Environment Agency (EEA)
	https://www.eea.europa.eu/en

54	European Commission – Culture and Creativity
	https://culture.ec.europa.eu/policies/culture-in-cities-and-regions/european-
	capitals-of-culture
55	OpenStreetMap ®
	https://www.openstreetmap.org
56	UNESCO World Heritage Convention
	https://whc.unesco.org/en/list/
57	Sporleder, C. (2010). Natural language processing for cultural heritage domains.
	Language and Linguistics Compass, 4(9), 750-768
58	Bai, N., Nourian, P., Luo, R., & Pereira Roders, A. (2022). Heri-graphs : a dataset
	creation framework for multi-modal machine learning on graphs of heritage
	values and attributes with social media. ISPRS International Journal of Geo-
	Information, 11(9), 469
59	Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2020). DistilBERT, a distilled version
	of BERT : smaller, faster, cheaper and lighter.
60	Devlin, J., Chang, MW., Lee, K., & Toutanova, K. (2019). BERT : Pre-training of
	Deep Bidirectional Transformers for Language Understanding.
61	Barbieri, F., Camacho-Collados, J., Neves, L., & Espinosa-Anke, L. (2020).
	TweetEval: Unified Benchmark and Comparative Evaluation for Tweet
	Classification.
62	Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
	Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT
	Pretraining Approach.
63	Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
	L., & Polosukhin, I. (2023). Attention Is All You Need

8 Annex I

RescueME Data Mapping Form (DMF)

ID	Description	Existing/Foreseen data	Туре	loT	Format	Size	Time coverage	Area coverage		Tempora I resolutio n	Update frequenc y	Collectio n	Licen ce	Ownersh iplauthor	Access mode	Access restrictions	Acces s links	Metadat a	Applicatio n field	Hazard type	DRM phase	Comments	Data example	Data example download	Indicator ID	Indicator calculation method	Module	to be importer
33200	Geolocated picture with metadata (report) from Chatbot	Foreseen	Structured	No	JSON or geoJSON	300k-4MB	timestamp	Point	Mobile phone positioning	Timestam P	Variable	users	TBD	LINKS	Web-based API	DAuth 2.0 - login with user-pass or API key	TED	no	Hazard and risk monitoring, impact mapping	het dille second	Response	Multihazards: all hazards These are crowdsourced reports that will be shared to other modules via APIs; For what concerns Hazard type the most impacting one will be selected	35001_LINKS_Chatbot_Rep rt_20201113T1000002_202011 3T1000002_11T				API tool	×
33201	Event detected thought social media	Foreseen	Structured	No	JSON or geoJSON	100-500k	days	BBDX depending on the event	na	na	15 min	Twitter	TBD	LINKS	Web-based API	DAuth 2.0 - login with user-pass or API key	TBD	no	Event detection, hazard and risk monitoring, impact mapping	Multinazard		Extra with respect to DoA					Bus	x
33202	Event report extracted from social media	Foreseen	Structured	No	JSON or geoJSON	100-500k	days	BBDX depending on the event Area of Interest	na	na	15 min	Twitter	TBD	UNKS	Web-based API	DAuth 2.0 - login with user-pass or API key	TBD	no	Event detection, hazard and risk monitoring, impact mapping	Multinazard		Extra with respect to DoA	35003 LINKS socialmedia events : 021003311500002 2020102811000 0021 IT				API tool	×
33203	Relevant Tweet in a specific spatio-temporal window, language and hazard	Foreseen	Structured	No		depends on reques		BBOX depending on the event Area of Interest	na	na	15 min	Twitter	TBD	LINKS	Web-based API	DAuth 2.0 - login with user-pass or API key	TBD	no	Event detection, hazard and risk monitoring, impact mapping	Multihazard s		Multihazards: all hazards For what concerns Hazard type the most impacting one will be selected	35004_LINKS_socialmedia, weets_2020102811500002_2 020102811500002_11				API tool	x
33204	Message from Data Resilience Dashboard to Chatbot users	Foreseen	Structured	No	JSON or geoJSON	100-500k	days	BBDX depending on the Area of Interest of the Communication	na	na		users	TBD	LINKS	Web-based API	DAuth 2.0 - login with user-pass or API key	TBD	no	Hazard and risk monitoring, impact mapping	bide altities are seen	Response	mountazarus: an nazarus These are crowdsourced reports that will be shared to other modules via APIs; For what concerns Hazard type the most	35005_LINKS_Chatbot_Com munication_20210630T15000 02_20210630T1500002_IT					×
33205	Mission from Data Resilience Dashboard to Chatbot professional users	Foreseen	Structured	No	JSON or geoJSON	100-500k	days	BBOX depending on the Area of Interest of the Mission	na	na		users	TBD	LINKS	Web-based API	DAuth 2.0 - login with user-pass or API key	TBD	no	Hazard and risk monitoring, impact mapping	hdultiloogrand	Response	incontazaroshaifVazaroshaif These are crowdsourced reports that will be shared to other modules via APIs; For what concerns Hazard type the most immediate are will be calculat	35006_LINKS_Chatbot_Mis ion_20210630T1500002_202 0630T1500002_LT					x
33100	Flood delineation Map	Existing	Structured	No	geoTIFF	depend or Area of Interest	timestamp	BBDX depending on the event Area of Interest	20m per pixel	na	Sentinel is used	Sentinel	Private	LINKS	WMS layer, API for metadata	DAuth 2.0 - login with user-pass or API key		yes, INSPIRE compliant	Impact mapping	Floods			32001_LINKS_flood_delinati on_20190515T0501002_20190 515T0501002_BA		36		Data Lake	v
33101	Burned area delineation Map	Existing	Structured	No	geoTIFF	depend or Area of Interest	timestamp	BBDX depending on the event Area of Interest		na	Sentinel is used	Sentinel	Private	LINKS	WMS layer, API for metadata	DAuth 2.0 - login with user-pass or API key		yes, INSPIRE compliant		Wildfire			32002_LINK_burned_area_c elineation_20170828T080300 2_20170828T0803002_GE				Data Lake	v
33102	Burned area severity map	Existing	Structured	No	geoTIFF	depend or Area of Interest	timestamp	BBDX depending on the event Area of Interest	10m per pixel	na	on demand, 3- 6 days if Sentinel is used	Sentinel	Private	LINKS	WMS layer, API for metadata	DAuth 2.0 - login with user-pass or API key		yes, INSPIRE compliant	Impact mapping	Wildfire							Data Lake	v
33103	Flood area geospatial image	Existing	Structured	No	geoTIFF	depend or Area of Interest	timestamp	BBDX depending on the event Area of Interest	20m per pixel	na	Sentinel is used	Sentinel	Private	LINKS	WMS layer, API for metadata	DAuth 2.0 - login with user-pass or API key		yes, INSPIRE compliant		Floods							Data Lake	v
33104	Burned area geospatial image	Existing	Structured	No	geoTIFF	depend or Area of Interest	timestamp	BBDX depending on the event Area of Interest	10m per pixel	na	on demand, 3- 6 days if Sentinel is used	Sentinel	Private	LINKS	WMS layer, API for metadata	DAuth 2.0 - login with user-pass or API key		yes, INSPIRE compliant	Impact mapping	Wildfire							Data Lake	v

Figure 29 - An example of data description from the LINKS sheet in the RescueME Data Mapping Form (DMF)

9 Annex II

Local data description of the RescueME R-Labscapes

PSILORITIS

ID	Description	Format	Time coverage	Area coverage	Spatial resolution / scale	Temporal resolution	Update frequency	Ownership / Author	Access link
31400	Roads	shapefile	N/A	Crete	N/A	N/A	N/A	NHMC	Data are not public (stored in IDEON premises)
31401	Waterways	shapefile	N/A	Crete	N/A	N/A	N/A	NHMC	Data are not public (stored in IDEON premises)
31402	River basins	shapefile	N/A	Crete	N/A	N/A	N/A	NHMC	Data are not public (stored in IDEON premises)
31403	Infrastructures	shapefile	N/A	Crete	N/A	N/A	N/A	Psiloritis geopark	https://tours.nhmc.uoc.gr/geo/psilo ritis/en/ Data are not available for downloading (stored in IDEON premises)
31404	Landslide risk areas	shapefile	N/A	Crete	N/A	N/A	N/A	EMERIC Proj./NHMC	Data are not public (stored in IDEON premises)
31405	Nature 2000	shapefile	N/A	Crete	N/A	N/A	N/A	Ministry of Environment	Data are not public (stored in IDEON premises)
31406	Cultural sites	shapefile	N/A	Crete	N/A	N/A	N/A	Psiloritis geopark	https://tours.nhmc.uoc.gr/geo/psilo ritis/en/ Data are not available for downloading (stored in IDEON premises)
31407	Elevation	shapefile	N/A	Crete	20 m	N/A	N/A	NHMC	Data are not public (stored in IDEON premises)

31408	Seismic zones	shapefile	N/A	Crete	N/A	N/A	N/A	EMERIC Proj. /NHMC	Data are not public (stored in IDEON premises)
31409	Geological sites	shapefile	N/A	Crete	N/A	N/A	N/A	Psiloritis geopark	https://tours.nhmc.uoc.gr/geo/psilo ritis/en/ Data are not available for downloading (stored in IDEON premises)
31410	Settlements	shapefile	N/A	Crete	N/A	N/A	N/A	NHMC	Data are not public (stored in IDEON premises)
31411	Geology	shapefile	N/A	Crete	N/A	N/A	N/A	NHMC	Data are not public (stored in IDEON premises)
31412	Municipal boundaries	shapefile	N/A	Crete	N/A	N/A	N/A	NHMC	Data are not public (stored in IDEON premises)
31413	Road network	shapefile	N/A	Crete	N/A	N/A	N/A	NHMC	Data are not public (stored in IDEON premises)
31414	Hillshade	shapefile	N/A	Crete	N/A	N/A	N/A	NHMC	Data are not public (stored in IDEON premises)
31415	Springs	shapefile	N/A	Crete	N/A	N/A	N/A	NHMC	Data are not public (stored in IDEON premises)
31416	CORINE Land use	shapefile	N/A	Crete	N/A	N/A	N/A	N/A	Data are not public (stored in IDEON premises)
31422	Local Precipitation data	.xls	1919-2006	Crete	N/A	N/A	N/A	Region of Crete	N/A
31423	Local temperature data	.xls	1979-2006	Crete	N/A	N/A	N/A	Region of Crete	N/A
31424	Local evaporation data	.xls	1970-2006	Crete	N/A	N/A	N/A	Region of Crete	N/A
31425	Regional Adaptation plan to the Climate change	pdf / maps	2022	Crete	Regional	N/A	N/A	Region of Crete	https://crete.gov.gr/wp- content/uploads/2023/03/%CE%9C %CE%B5%CE%BB%CE%AD%CF%84% CE%B7- %CE%A0%CE%95%CE%A3%CE%A0% CE%9A%CE%91- %CE%91%CF%8D%CE%B3%CE%BF%

									CF%85%CF%83%CF%84%CE%BF%CF %82-2022.pdf
31426	Earthquake catalogue of Crete	book	since 2008/01/01	Crete	National	N/A	N/A	G. Papadopoulos (auth)	https://bbnet.gein.noa.gr/HL/databa ses/database
31427	River basin management plans	csv, KML, pdf, shp, SVG, TIFF	N/A	Crete	N/A	N/A	N/A	Ministry of Environment	https://wfdver.ypeka.gr/wp- content/uploads/2017/04/FEK_570. B.2015_GR13-1.pdf
31428	River basin management plans	Pdf / law	N/A	Crete	N/A	N/A	N/A	Ministry of Environment	https://wfdver.ypeka.gr/wp- content/uploads/2017/04/FEK_570. B.2015_GR13-1.pdf
31429	Greek Tourism and climate change: Adaptation policies and new development strategy	pdf	N/A	Greece	N/A	N/A	N/A	Bank of Greece	https://www.bankofgreece.gr/Relate dDocuments/EMEKA_tourismos_20 14pdf
31430	The environmental, economic, and social impact of Climate Change in Greece	pdf	N/A	Greece	N/A	N/A	N/A	Bank of Greece	https://www.bankofgreece.gr/Public ations/%CE%A0%CE%BB%CE%B7%C F%81%CE%B7%CF%82_%CE%95%CE %BA%CE%B8%CE%B5%CF%83%CE% B7.pdf?mode=preview
31431	Geosites	viewer	N/A	Crete	N/A	N/A	N/A	Psiloritis geopark	https://tours.nhmc.uoc.gr/geo/psilo ritis/en/ Data are not available for downloading (stored in IDEON premises)
31432	Activities	viewer	N/A	Crete	N/A	N/A	N/A	Psiloritis geopark	https://tours.nhmc.uoc.gr/geo/psilo ritis/en/ Data are not available for downloading (stored in IDEON premises)
31433	Geopark stakeholders	viewer	N/A	Crete	N/A	N/A	N/A	Psiloritis geopark	https://tours.nhmc.uoc.gr/geo/psilo ritis/en/

									Data are not available for downloading (stored in IDEON premises)
31434	Infrastructure - Rethymnon settlements	DXF, csv, KML, pdf, shp, SVG, TIFF	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map1_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
	Infrastructure - Rethymnon expropriations of provincial road network	DXF, csv, KML, pdf, shp, SVG, TIFF	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map1_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31436	Infrastructure - Rethymnon National Road network	DXF, csv, KML, pdf, shp, SVG, TIFF	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map1_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31437	Infrastructure - Rethymnon delimitations of streams (Gazette)	DXF, csv, KML, pdf, shp, SVG, TIFF	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map1_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31438	Infrastructure - Rethymnon delimitations of streams (Prefect's Decision or DTE)	DXF, csv, KML, pdf, shp, SVG, TIFF	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map1_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31439 - 31448	Satellite data – all available layers	GeoTIFF	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map1_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31449	Certified Forest Map	DXF, csv, KML, pdf, shp, SVG, TIFF	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map1_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9

31450	Post Forest Map Amendment 2022	DXF, csv, KML, pdf, shp, SVG, TIFF	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map1_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31451	Archaeological sites P.E. Rethymnon	DXF, csv, KML, pdf, shp, SVG, TIFF	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31452	Prohibition of traffic in fire danger index 4 & 5 P.e. Rethymnon	DXF, csv, KML, pdf, shp, SVG, TIFF	2022	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31453	Fire events – Burnt area in Ierapetra Agios Nikolaos (Forest map classification)	DXF, csv, KML, pdf, shp, SVG, TIFF	2024/04/04 - 11	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31454	Fire events – Burnt area in Ierapetra Agios Nikolaos (Corine Land Cover)	DXF, csv, KML, pdf, shp, SVG, TIFF	2024/04/04 - 11	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31455	Fire events – Burnt area in Melampes of Rethymnon (Forest map classification)	DXF, csv, KML, pdf, shp, SVG, TIFF	2022/07/15 - 20	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31456	Fire events – Burnt area in Melampes of Rethymnon (Corine Land Cover)	DXF, csv, KML, pdf, shp, SVG, TIFF	2022/07/15 - 20	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9

31457	Fire events – Burnt area in Preveli Rethymnon (Forest map classification)	DXF, csv, KML, pdf, shp, SVG, TIFF	2021/07/07	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31458	Fire events – Burnt area in Preveli Rethymnon (Corine Land Cover)	DXF, csv, KML, pdf, shp, SVG, TIFF	2021/07/07	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31459	Fire events – Burnt area in Preveli Rethymnon (Natura area)	DXF, csv, KML, pdf, shp, SVG, TIFF	2021/07/07	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31460	Flood Map – Adelianos Kampos of Rethymnon (Additional incident information)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31461	Flood Map – Adelianos Kampos of Rethymnon (Incident data)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31462	Flood Map – Adelianos Kampos of Rethymnon (Elevation contour)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31463	Flood Map – Adelianos Kampos of	DXF, csv, KML, pdf,	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade

	Rethymnon (Trace charts)	shp, SVG, TIFF							r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31464	Flood Map – Adelianos Kampos of Rethymnon (Land cover)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31465	Flood Map – Adelianos Kampos of Rethymnon (Buildings)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31466	Flood Map – Adelianos Kampos of Rethymnon (Road network)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31467	Flood Map – Adelianos Kampos of Rethymnon (Area of interest)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31468	Flood Map – Adelianos Kampos of Rethymnon (Hydrography - lines)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31469	Flood Map – Adelianos Kampos of Rethymnon (Hydrography - polygons)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31470	Flood Map – Adelianos	DXF, csv, KML, pdf,	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade

	Kampos of Rethymnon (Transport Network Infrastructures)	shp, SVG, TIFF							r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31471	Flood Map – Boleones of Rethymnon (Incident data)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4273151.0570441&zoom=9
31472	Flood Map – Boleones of Rethymnon (Elevation contour)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31473	Flood Map – Boleones of Rethymnon (Trace charts)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31474	Flood Map – Boleones of Rethymnon (Land cover)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31475	Flood Map – Boleones of Rethymnon (Buildings)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31476	Flood Map – Boleones of Rethymnon (Road network)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31477	Flood Map – Boleones of Rethymnon (Area of interest)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31478	Flood Map – Boleones of	DXF, csv, KML, pdf,	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade

	Rethymnon (Hydrography - lines)	shp, SVG, TIFF							r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31479	Flood Map – Boleones of Rethymnon (Hydrography – polygons)	DXF, csv, KML, pdf, shp, SVG, TIFF	2020/11/13	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31480	Landslides – Seismotectonic map of Crete (TEE 1982)	DXF, csv, KML, pdf, shp, SVG, TIFF	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31481	Risk of landslides P.E. Rethymnon (Apok. Diok. Crete)	DXF, csv, KML, pdf, shp, SVG, TIFF	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31482	Landslides – Cracks (Republic Administration of Crete)	DXF, csv, KML, pdf, shp, SVG, TIFF	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31483	Ecclesiastical monuments P.E. Rethymnon	DXF, csv, KML, pdf, shp, SVG, TIFF	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map6_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
31484 - 31495	Environment – all available layers	DXF, csv, KML, pdf, shp, SVG, TIFF	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map7_loade r_public
31496 - 314107	Spatial & Urban planning – all layers from the Regional Spatial Framework folder	DXF, csv, KML, pdf, shp, SVG, TIFF	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/?tab=vie wport_maptab&loader=map8_loade r_public&lon=2762663.5125719⪫ =4201151.0570441&zoom=9
314108	Sentinel Hub Vegetation Index	jpeg	N/A	Crete	N/A	N/A	N/A	Region of Crete	https://gis.crete.gov.gr/sdi/modules /sentinelhubplayground/playground

				1			ſ	T	
									/?source=DSS2⪫=35.2989871994
									5333&lng=24.415740966796875&zo
									om=9&preset=5-VEGETATION-
									INDEX&layers=B04,B03,B02&maxcc=
									20&gain=1.0γ=1.0&time=20 17-03-28%7C2021-04-
									17&atmFilter=&showDates=false
									https://gis.crete.gov.gr/sdi/modules
									/sentinelhubplayground/playground
	Sentinel Hub								/?source=DSS2⪫=35.2989871994
314109	Normalized		NI / A	Cristia	NI / A	N/A	NI / A		5333&Ing=24.415740966796875&zo
314109	Snow Cover	jpeg	N/A	Crete	N/A	N/A	N/A	Region of Crete	om=9&preset=6- NDSI&layers=B04,B03,B02&maxcc=2
	Index (NDSI)								
									0&gain=1.0γ=1.0&time=201 7-03-28%7C2021-04-
									17&atmFilter=&showDates=false
									https://gis.crete.gov.gr/sdi/modules
									/sentinelhubplayground/playground
									/?source=DSS2⪫=35.2989871994
	Sentinel Hub								5333&lng=24.415740966796875&zo
314110	Normalized	inog	N/A	Crete	N/A	N/A	N/A	Region of Crete	om=9&preset=7-
514110	Water Index	jpeg	11/4	ciete	N/A	N/A	N/A	Region of crete	NDWI&layers=B04,B03,B02&maxcc=
	(NDWI)								20&gain=1.0γ=1.0&time=20
									17-03-28%7C2021-04-
									17&atmFilter=&showDates=false
									https://gis.crete.gov.gr/sdi/modules
									/sentinelhubplayground/playground
									/?source=DSS2⪫=35.2989871994
									5333&lng=24.415740966796875&zo
314111	Sentinel Hub	jpeg	N/A	Crete	N/A	N/A	N/A	Region of Crete	om=9&preset=FIS_8-MOISTURE-
	Humidity Index	16-9	.,		.,		,		INDEX&layers=B04,B03,B02&maxcc=
									20&gain=1.0γ=1.0&time=20
									17-03-28%7C2021-04-
									17&atmFilter=&showDates=false
	River basin	DXF, csv,						Miniatury of	
314112	Geoportal (all	KML, pdf,	NI / A	Crosse	NI / A	NI/A	NI/A	Ministry of	https://wfdgig.upgkg.gr/
514112	layers available	shp, SVG,	N/A	Greece	N/A	N/A	N/A		https://wfdgis.ypeka.gr/
	over the Aol)	TIFF						Energy	

314113	National Observatory of Athens: Weather events with socio-economic impacts in Greece since 2000	viewerpdf	2000 - 2024	Greece	National	Event-based	Event-based	Athens (EAA)	https://www.meteo.gr/weather_cas es.cfm
--------	--	-----------	-------------	--------	----------	-------------	-------------	--------------	--

NEUWERK

ID	Description	Format	Time coverage	Area coverage	Spatial resolution / scale	Temporal resolution	Update frequency	Ownership / Author	Access link
31500	Economic effect of tourism on the region of Neuwerk	.pdf	2019-2021	Hamburgs Wadden Sea National Park (including the island of Neuwerk)	Regional	N/A	none so far	National Park Authority Hamburg/BUKEA	Not publicly available yet
31501	Geobasis Maps	png, pgw	Last changed: 01.10.2022	Hamburg City	1:10.000	N/A	twice yearly		https://geoportal-hamburg.de/geo- online/?lng=de
31502	Heritage areas	csv, GeoJson, WMS	2014	Hamburgs Wadden Sea National Park (including the island of Neuwerk)	N/A	N/A	four times per year		https://geoportal-hamburg.de/geo- online/?lng=de

31503	Ground Monument: location	csv, GeoJson, GML, WMS, WFS	Last changed: 09.11.2020	Hamburg City	N/A	N/A	as required	LGV (City of Hamburg)	https://geoportal-hamburg.de/geo- online/?Ing=de
31504	INSPIRE Land use	gml,xsd	Last changed: 15.07.2020	Hamburgs Wadden Sea National Park (including the island of Neuwerk)	N/A	N/A	twice yearly	LGV (City of Hamburg)	https://geoportal-hamburg.de/geo- online/?Ing=de
31505	Coastal Protection Structure (dykes)	csv, GeoJson	Last changed: 26.06.2020	Hamburg City	N/A	N/A	as required	LGV (City of Hamburg)	https://geoportal-hamburg.de/geo- online/?lng=de
31506	Orthophotos	tif	Last changed: 30.04.2022	Hamburgs Wadden Sea National Park (including the island of Neuwerk)	20 cm	N/A	continuously	LGV (City of Hamburg)	https://geoportal-hamburg.de/geo- online/?Ing=de
31507	Cadastral parcels (INSPIRE HH Flurstücke/Gru ndstücke ALKIS)	gml	every 6 months since 2017	Hamburg City	1:5.000	N/A	twice yearly	LGV (City of Hamburg)	https://geoportal-hamburg.de/geo- online/?lng=de
31508	Location of buildings	gml	Last changed: 24.07.2017	Hamburgs Wadden Sea National Park (including the island of Neuwerk)	N/A	N/A	twice yearly	LGV (City of Hamburg)	https://geoportal-hamburg.de/geo- online/?lng=de
31509	INSPIRE HH Hydro-Physical Waterways (ALKIS Data)	gml, WMS, WFS	Last changed: 14.07.2022	Hamburg	N/A	N/A	twice yearly	LGV (City of Hamburg)	https://geoportal-hamburg.de/geo- online/?lng=de

31510	INSPIRE HH Addresses House Coordinates	gml, WFS, WMS, XSD	2020-07	Hamburgs Wadden Sea National Park (including the island of Neuwerk)	N/A	N/A	updated every 6 months		https://geoportal-hamburg.de/geo- online/?lng=de
31511	Landuse Coastal High Water Extreme events	gml, xsd	22.12.2019	Hamburg City	N/A	N/A	continuously	BUKEA (City of Hamburg)	N/A
31512	DEM	ascii, png, WMS	Last changed: 24.04.2022	Island of Neuwerk	1 m	N/A	yearly	LGV (City of Hamburg)	https://geodienste.hamburg.de/HH _WMS_DGM1
31513	Bathymetry	WMS, WFS, WCS, shapefile		Hamburgs Wadden Sea National Park (including the island of Neuwerk)	5 m	N/A	N/A		https://mdi- dienste.baw.de/terria_en/
31514	INSPIRE Road area	gml	Last changed: 26.10.2023	Hamburg City	N/A	N/A	twice yearly		https://geoportal-hamburg.de/geo- online/?Ing=de
31515	Bathymetry EasyGSH	shp	1996 - 2022	Coastal area of the German Bight	1 m	N/A	N/A	Fasy (aSH	https://trilawatt.eu/daten/datenpro dukte/

PORTOVENERE, CINQUE TERRE AND THE ISLANDS

ID	Description	Format	Time coverage	Area coverage	Spatial resolution / scale	Temporal resolution	Update frequency	Ownership / Author	Access link
31607	Terraced Areas / Land Use	shp, GML, GeoPackage, KML, WMS, WFS	2000	Liguria Region	1:25000	N/A	N/A	LINKS	https://geoportal.regione.liguria.it/c atalogo/mappe.html
31608	Waterways	shp, GML, GeoPackage, KML, WMS, WFS	2023	Liguria Region	1:10000	N/A	N/A	LINKS	https://geoportal.regione.liguria.it/c atalogo/mappe.html
31609	Pedonal paths	shp, GML, GeoPackage, KML, WMS, WFS	2023	Liguria Region	1:25000	N/A	N/A	LINKS	https://geoportal.regione.liguria.it/c atalogo/mappe.html
31610	Elements exposed to flood risk	shp, gpkg, WMS	2024	Liguria Region	1:10000	N/A	N/A	LINKS	https://geodata.appenninosettentri onale.it/geoserver/adbarno/ows?se rvice=WFS&version=1.0.0&request= GetFeature&typeName=adbarno:PI ANIFICAZIONE.SIT.PGRA_ITC_FLUVI AL&outputFormat=SHAPE-ZIP
31611	Landslides	shp, GML, GeoPackage, KML, WMS, WFS	2014	Liguria Region	1:10000	N/A	N/A	LINKS	https://geoportal.regione.liguria.it/c atalogo/mappe.html
31612	Flooded areas	shapefile, WMS	2015-2022	Liguria Region	N/A	N/A	N/A	LINKS	https://geoportal.regione.liguria.it/c atalogo/mappe.html
31613	Seismic zones	shp, GML, GeoPackage, KML, WMS, WFS	2018	Liguria Region	1:5000	N/A	N/A	LINKS	https://geoportal.regione.liguria.it/c atalogo/mappe.html
31614	Seismogenic zones of Liguria Region	shp, GML, GeoPackage,	2021	Liguria Region	1:5000	N/A	N/A	LINKS	https://geoportal.regione.liguria.it/c atalogo/mappe.html

		KML, WMS, WFS						
31615	Map of homogeneous microzones in seismic perspective (M.O.P.S.)	shp, GML, GeoPackage, KML, WMS, WFS	2021	Liguria Region	1:5000	N/A	N/A	https://geoportal.regione.liguria.it/c atalogo/mappe.html

L'HORTA DE VALENCIA

ID	Description	Format	Time coverage	Area coverage	Spatial resolution / scale	Temporal resolution	Update frequency	Ownership / Author	Access link
31700	Social Vulnerability areas in the city of Valencia. Socioeconomic indicators.	.xlsx	2022 (1 year)	Local (City of Valencia)	N/A	N/A	Annual	The CITY COUNCILOT	https://estadisticavlc2.shinyapps.io/ Areas_Vulnerables_2022/
31703	CO2 stock	TIF	Created on June 2021	Regional (Valencian Community)	5 m	N/A	N/A	N/A	https://catalogo.icv.gva.es/geonetw ork/srv/eng/catalog.search#/metad ata/spaicv_orde_sertem_cambio_cli matico_stockCO2
31704	Cartography of critical soils for aquifer recharge	SHP	Created on 29/03/202 0	Regional (Valencian Community)	1/50000	N/A	Updated 4 months ago (may 2023)	N/A	https://geocataleg.gva.es/#/search? uuid=spa_icv_orde_sertem_cambio _climatico_acuiferos
31705	Soil permeability	SHP	Created on 29/03/202 0	Regional (Valencian Community)	1/50000	N/A	Updated 4 months ago (may 2023)	N/A	https://geocataleg.gva.es/#/search? uuid=spa_icv_orde_sertem_cambio _climatico_permeabilidad
31706	Marine intrusion	SHP	Created on 29/03/202 0	Regional (Valencian Community)	1/50000	N/A	Updated 4 months ago (may 2023)	N/A	https://geocataleg.gva.es/#/search? uuid=spa_icv_orde_sertem_cambio _climatico_intrusion_mar

31707	Annual carbon dioxide fixation	TIFF	Created on 17/06/21	Regional (Valencian Community)	5 m	N/A	Updated 4 months ago (may 2023)	of Environment,	https://geocataleg.gva.es/#/search? uuid=spaicv_orde_sertem_cambio_ climatico_fijacionCO2
	PATRICOVA – Sectoral territorial action plan on flood risk prevention in the Valencian community	-	created 2003; reviewed 2015; application guide 2019	Regional (Valencian Community)	N/A	N/A	Last update: 2015	Landscape - Regional Ministry of Territorial Policy, Public Works and Mobility - Generalitat Valenciana	https://mediambient.gva.es/es/web /planificacion-territorial-e- infraestructura-verde/patricova- plan-de-accion-territorial-de- caracter-sectorial-sobre-prevencion- del-riesgo-de-inundacion-en-la- comunitat-valenciana
	PATIVEL - Territorial Action Plan for Coastal Green Infrastructure.	Maps, documents.	created 2018.	Regional (Valencian Community)	N/A	N/A	N/A	Regional Ministry of Territorial Policy, Public Works and	https://mediambient.gva.es/es/web /planificacion-territorial-e- infraestructura-verde/plan-de- accion-territorial-de-la- infraestructura-verde-del-litoral
31710	Territorial Action Plan for L'Horta	Maps, documents.	Approved 2018.	Supramunici pal (Horta territory)	N/A	N/A	N/A	Policy and Landscape - Regional Ministry of Territorial Policy, Public Works and Mobility - Generalitat	https://mediambient.gva.es/es/web /planificacion-territorial-e- infraestructura-verde/pat-horta-de- valencia https://catalogo.icv.gva.es/geonetw ork/srv/cat/catalog.search#/metada ta/spa_icv_orde_pathuerta_amb_es tricto

31711	PATFOR - Territorial forestry action plan of the Region of Valencia	Maps		Regional (Valencian Community)	N/A	N/A	N/A	S.D.G. for Land Planning and Landscape Management - Regional Ministry of Environment, Water, Infrastructures and Territory - Generalitat Valenciana.	https://geocataleg.gva.es/#/results/ forestal
31712	Open data portal of València: Atmospheric data from 5 meteorological stations in the Valencia city		Real-time	Valencia city	N/A	N/A	N/A	Water, Infrastructures and Territory -	https://valencia.opendatasoft.com/ explore/dataset/estacions- atmosferiques-estaciones- atmosfericas/table/?location=12,0.0 0902,0.02622&basemap=e4bf90
31713	Open data portal of València: Pollution data from 11 atmospheric stations in the Valencia city	csv, json, xls, GeoJSON, shp, KML, FlatGeobuf, GPX, GeoParquet, API	Real-time	Valencia city	N/A	N/A	N/A	Management - Regional Ministry of Land and Urban	https://valencia.opendatasoft.com/ explore/dataset/estacions- atmosferiques-estaciones- atmosfericas/table/?location=12,0.0 0902,0.02622&basemap=e4bf90
31714	Open data portal of València: Air quality historical for the Valencia city	csv, json, xls, GeoParquet, API	2004 - 2022	Valencia city	N/A	Daily	Last processing 28 February 2024	Regional Ministry of Housing, Public Works and Vertebration of the Territory	https://valencia.opendatasoft.com/ explore/dataset/rvvcca/table/
31715	Daily measures of atmospheric pollutants and ozone from	csv, tsv, json, xml, API	1994 - 2024	Valencian Community	Regional	Daily	Monthly (last update May 5, 2024)	of Environment, Water	https://dadesobertes.gva.es/es/dat aset?q=contaminaci%C3%B3n&grou ps=medio-

	Conjuntos de datos - Generalitat Valenciana							Territory - Generalitat Valenciana.	ambiente&sort=metadata_modified +desc&page=4
31716	Vulnerable areas due to nitrates in the Valencian Community	csv, tsv, json, xml, API	Ν/Δ	bbox-east- long: 0.4989 bbox-north- lat: 41 bbox-south- lat: 37.8483 bbox-west- long: -1.6	Regional	N/A	N/A	Ajuntament de València - Dades Obertes	https://dadesobertes.gva.es/es/dat aset/zonas-vulnerables-por-nitratos- en-la-comunitat-valenciana
31717	Sistema Automatico de Informacion Hidrologica (S.A.I.H.)	.xlsx, .pdf	From last year to last 5 minutes	Valencian Community	Regional	yearly, monthly, weekly, daily, 8- hours, 5-min	Real-time	Confederación Hidrográfica del Júcar	https://saih.chj.es/chj/saih/glayer?t =e
31718	Portal Agrari (agricultural statistics in the Valencian Community)	.xlsx	2002 - 2022	Valencian Community	Regional	yearly	yearly	Generalitat Valenciana	https://portalagrari.gva.es/va/

ZADAR

ID	Description	Format	Time coverage	Area coverage	Spatial resolution / scale	Temporal resolution	Update frequency	Ownership / Author	Access link
31801	Geoportal kulturnih dobara	.xlsx, WMS, WFS	Last update 2024	Croatia	National	N/A	N/A		https://geoportal.kulturnadobra.hr/ geoportal.html?lang=eng#/

31802	Sea bathing water quality in Croatia	viewer	2009-2023	Croatia	N/A	N/A	N/A	Institute of Public Health /adar	https://vrtlac.izor.hr/ords/kakvoca/k akvoca_detalji10
31803	Climate monitoring	viewer	2014-2024	Croatia	N/A	N/A	N/A	DHMZ - Meteorological and Hydrological Service	https://meteo.hr/klima_e.php?secti on=klima_pracenje¶m=klel
31804	Nature and environment al protection information system	viewer	N/A	Croatia	N/A	N/A	N/A	Ministry of Economy and Sustainable Development	https://www.haop.hr/hr/informacijs ki-sustavi/informacijski-sustav- zastite-prirode/zasticena-podrucja
31805	Register of cultural assets of the Republic of Croatia	webpage	N/A	Zadar	City	N/A	N/A	Munistry of Culture and Media	https://registar.kulturnadobra.hr/#/ details/Z-3409
31806	Cartographic representati on and data on the ecological network Natura 2000	.csv, .xls	Depending on the dataset	Croatia	National	N/A	N/A	Ministry of Environmental Protection and Green Transition / Institute for Environmental and Nature Protection	https://bioportal.hr/gis/

10 Annex III

Description of data at European scale relevant for RescueME

ID	Description	Format	Time coverage	Area coverage	Spatial resolution / scale	Temporal resolution	Update frequency	Ownership / Author	Access link
12100	Employment (Total - all NACE activities)	.xlsx	2018-2021	EU	NUTS3	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase

12101	Gross Domestic Product attributable to private and formal cultural production (million euro)	.xlsx	2000-2021	EU	NUTS3	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12103	Bed-places in tourist accommodation	.xlsx	1990-2011	EU	NUTS3	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12105	Employment (Arts, entertainment and recreation; other service activities)	.xlsx	2012-2021	EU	NUTS3	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/databrowser/view/ nama_10r_3emperscu stom_8159593/default/t able
12106	Natura 2000 sites	.gpkg	2021	EU27	N/A	N/A	annual	EEA	https://www.eea.europa .eu/data-and- maps/data/natura-14
12107	Landslide susceptibility map	.shp	2018	All European Union member states except Malta, in addition to Albania, Andorra, Bosnia and Herzegovina, Croatia, FYR Macedonia, Iceland, Kosovo, Liechtenstein, Montenegro, Norway, San Marino, Serbia, and Switzerland	cell size 200 m	N/A	N/A	JRC	https://esdac.jrc.ec.euro pa.eu/content/european -landslide-susceptibility- map-elsus-v2

12108	Degree of urbanisation	.tif	2018	Kosovo (UNSCR 1244/99), Albania, Serbia, EFTA4, Montenegro, North Macedonia, Bosnia and Herzegovina, EU28 (2013- 2020)	cell size 1 km	N/A	not planned	EEA	https://www.eea.europa .eu/en/datahub/datahub item-view/a5857b35- 9d27-4d42-94b7- 4d141ee5b550
12109	Precipitation variation	.xlsx	1970-2021	Belgium, Bulgaria, Czechia, Denmark, Germany, Estonia, Ireland, Spain, France, Croatia, Italy, Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Austria, Poland, Portugal, Romania, Slovenia, Slovenia, Slovakia, Finland, Sweden, Liechtenstein, Norway, Switzerland,	NUTSO	annual	annual	EUROSTAT	https://ec.europa.eu/eur ostat/databrowser/view/ env_wat_res/default/tab le?lang=en

				United Kingdom, Bosnia and Herzegovina, North Macedonia, Albania, Serbia, Türkiye, Kosovo (under United Nations Security Council Resolution 1244/99)					
12110	Nature Based recreation potential	.gpkg	2000/2006/ 2012	Europe	cell size = 1km	N/A	every 6 years	JRC	https://ecosystem- accounts.jrc.ec.europa.e u/map
12111	Habitat and species maintenance	.tif	2000/2006/ 2012/2018	Europe	cell size = 1km	N/A	every 6 years	JRC	https://ecosystem- accounts.jrc.ec.europa.e u/map
12112	Global climate regulation - Carbon sequestration	.tif	2000/2006/ 2012/2018	Europe	cell size = 1km	N/A	every 6 years	JRC	https://ecosystem- accounts.jrc.ec.europa.e u/map
12113	Number of fire events	.csv	2006-2022	Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary,	NUTSO	average 2006- 2022, number in 2023	irregular	JRC	https://effis.jrc.ec.europ a.eu/apps/effis.statistics/ estimates

				Ireland, Italy, Latvia, Lithuania, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden					
12114	Fire-ridden areas	.csv	2006-2022	Austria, Belgium, Bulgaria, Croatia, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden	NUTSO	average 2006- 2022	irregular	JRC	https://effis.jrc.ec.europ a.eu/apps/effis.statistics/ estimates
12115	Nationally designated areas (protected	.gpkg	2023	Europe	N/A	N/A	N/A	EEA	https://www.eea.europa .eu/en/datahub/datahub item-view/f60cec02- 6494-4d08-b12d- 17a37012cb28

	areas <> Natura 2000)								
12116	Available beds in hospitals	.xlsx	1993 - 2022	EU27+x	NUTS2	annual	annual	EUROSTAT	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12117	Historical building stock	.xlsx	2011	EU27+x	NUTS3	single year	next update 2024	EUROSTAT	https://ec.europa.eu/Ce nsusHub2/selectHyperCu be?clearSession=true
12118	Households with internet access	.xlsx	2006-2022	Europe (38 countries)	NUTS2	annual	annual	EUROSTAT	https://ec.europa.eu/eur ostat/databrowser/explo re/all/all_themes?lang=e n&display=list&sort=cate gory
12119	Classification as inner periphery	.xlsx	2013	EU27+x	NUTS3		not planned	ESPON	https://database.espon. eu/project-data- package/985/
12120	Physicians per 100000 Inhabitants	.xlsx	1993-2022	EU27+x	NUTS2	annual	annual	EUROSTAT	https://ec.europa.eu/eur ostat/databrowser/view/ hlth_rs_physreg/default/ table?lang=en
12121	UNESCO World Heritage Sites	.xlsx	2023	World	point data	N/A	N/A	UNESCO	https://whc.unesco.org/ en/syndication
12122	Endangered UNESCO World Heritage Sites	.xlsx	2023	World	point data	N/A	N/A	UNESCO	https://whc.unesco.org/ en/syndication
12123	Energy consumption data	.xlsx	2002, 2012, 2018	EU27+x	NUTS3	irregular	irregular	ESPON LOCATE	https://database.espon. eu/project-data- package/971/
12124	Arrivals at tourist accommodation establishments	.xlsx	2012-2022	EU	NUTS2	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12125	Seasonality in tourism	.xlsx	2011	EU	NUTS3	-	N/A	ESPON TEVI	https://www.espon.eu/si tes/default/files/attachm ents/TEVI_territorial_evi dence_reports.pdf

12126	Economic damage due to four natural hazard	.xlsx	1995-2017	EU	NUTS3	average (1995- 2017)	N/A	ESPON	https://www.espon.eu/n atural-disasters
12127	Annual income	.xlsx	1995-2021	EU	NUTS2	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/databrowser/view/ nama_10r_2hhinccust om_8726683/default/ta ble
12128	Environmental protection investments of total economy	.xlsx	2006-2021	EU	NUTS0	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/databrowser/view/ env_ac_epitecustom_ 8731595/default/table
12129	Total number of agricultural holdings	.xlsx	2000-2007	EU	NUTS3	annual	N/A	Eurostat	https://ec.europa.eu/eur ostat/databrowser/view/ ef_r_nutscustom_873 3557/default/table
12130	Total per capita expenditure on the preservation, protection and conservation of all cultural and natural heritage	.xlsx	2018-2021	17 european countries	NUTSO	annual	annual	UNESCO stat office	http://data.uis.unesco.or g/Index.aspx?DataSetCo deEDULIT_DS&popupcus tomisetrue&langen#
12131	House price index - quarterly data	.xlsx	2006-2023	EU	NUTSO	quarterly data	quarterly	Eurostat	https://ec.europa.eu/eur ostat/databrowser/view/ tipsho40_custom_8775 429/default/table?lang= en
12132	Unemployment rate	.xlsx	2011-2022	EU	NUTS2	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12133	Population density	.xlsx	2017-2022	EU	NUTS3	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase

12135	Population change	.xlsx	2000-2021	EU	NUTS3	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12136	Land use change between 2012 and 2018	.tif	1998 - 2018	EU	Min. Mapping Unit = 25ha / 100m	-	6 years	COPERNICUS	https://land.copernicus. eu/en
12137	Proportion of population aged 20-39 years	.xlsx	2018-2022	EU	NUTS3	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12138	Proportion of population aged 65 years and more	.xlsx	2018-2022	EU	NUTS3	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12139	Young-age dependency ratio (population 0 to 14 years to population 15 to 64 years)	.xlsx	2018-2022	EU	NUTS3	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12140	Net migration	.xlsx	2017-2021	EU	NUTS3	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12141	Employed persons with tertiary education (15- 64 years)	.xlsx	2018-2022	EU	NUTS3	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12142	Early leavers from education and training	.xlsx	2000-2022	EU	NUTS2	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12143	Land use (urban, agricultural, forest, land+water)	.gpkg	2018	EU	Min. Mapping Unit = 25ha / 100m	-	6 years	COPERNICUS	https://land.copernicus. eu/en

12144	Imperviousness (sealed area)	.tif	2018	EU	cell size = 100m	-	-	COPERNICUS	https://land.copernicus. eu/en
12148	NUTSO - availability of national action plan (NAP) or national adaptation strategy (NAS)	.xlsx	2005-2018	EU	NUTO	annual	annual	EEA	https://www.eea.europa .eu/airs/2018/environme nt-and-health/climate- change-adaptation- strategies
12149	Elevation breakdown based on EU- DEM	.tif	-	EU	cell size 1 km	-	-	EEA	https://www.eea.europa .eu/en/datahub/datahub item-view/869d38c9- 79e2-44c6-9de1- 8966f4753f7c
12153	Size of build-up area	.tif	2016	Worldwide		-	-	DLR	https://www.dlr.de/eoc/ desktopdefault.aspx/tabi d-9628/16557_read- 40454/
12154	Agricultural area	.gpkg	2018	EU	Min. Mapping Unit = 25ha / 100m	-	6 years	COPERNICUS	https://land.copernicus. eu/en
12155	Share of holders > 65 years old	.xlsx	2000-2007	EU	NUTS3	annual	N/A	Eurostat	https://ec.europa.eu/eur ostat/databrowser/view/ ef_r_nutscustom_873 3557/default/table
12156	Share of holdings with a full-time manager	.xlsx	2000-2007	EU	NUTS3	annual	N/A	Eurostat	https://ec.europa.eu/eur ostat/databrowser/view/ ef_r_nutscustom_873 3557/default/table
12157	Employment in agriculture, forestry and fishing	.xlsx	2012-2021	EU	NUTS3	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12158	Land tenure system	.xlsx	2000-2007	EU	NUTS3	annual	N/A	Eurostat	https://ec.europa.eu/eur ostat/databrowser/view/ ef_r_nutscustom_873 3557/default/table

12159	Diversification of agricultural activities - Agricultural area of holdings with Mixed crops - livestock	.xlsx	2000-2007	EU	NUTS3	annual	N/A	Eurostat	https://ec.europa.eu/eur ostat/databrowser/view/ ef_r_nutscustom_873 3557/default/table
12160	Arable land	.gpkg	2018	EU	Min. Mapping Unit = 25ha / 100m	-	6 years	COPERNICUS	https://land.copernicus. eu/en
12161	Parity in farm managers (% of female farm managers)	.xlsx	2010-2020	EU	NUTS2	irregular	irrgular	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12162	Cultural sites with international designation	.geojson		Global (WHS) and EU (CC)	point data	annual	Yearly	UNESCO (WHS) and European Comission	https://whc.unesco.org/ en/list/ https://culture.ec.europ a.eu/policies/culture-in- cities-and- regions/european- capitals-of-culture
12163	Protected natural and agricultural areas with international designation	.shp		Global (WDPA) and Europe (Natura 2000)	Polygons	annual	Yearly	UNEP-WCMC and IUCN (2024), Protected Planet: The World Database on Protected Areas (WDPA) [Online], January 2024, Cambridge, UK: UNEP- WCMC and IUCN. Available at:	https://www.protectedpl anet.net/en https://www.eea.europa .eu/en/datahub/datahub item-view/6fc8ad2d- 195d-40f4-bdec- 576e7d1268e4

12164	Number of PDO products allowed to be produced in this NUTS3 region	.xlsx	2020	EU	NUTS3	_	-	www.protecte dplanet.net. European Environment Agency Flinzberger, L., Zinngrebe, Y., Bugalho, M.N. et al. EU-wide mapping of 'Protected Designations of Origin' food products (PDOs) reveals correlations with social- ecological landscape values. Agron. Sustain. Dev. 42, 43 (2022). https://doi.org /10.1007/s135 93-022-00778- 4	https://zenodo.org/recor ds/6483031
12165	Gender employment GAP	.xlsx	1999-2022	EU	NUTS2	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12166	Number of strategic buildings	.shp, 1 file per country	2023	Worldwide	point data	n/a	continuous	OpenStreetMa p	https://www.openstreet map.org/#map=7/51.33 0/10.453
12167	Permanent cultivations surface (are of vineyards & olive groves)	.gpkg	2018	EU	Min. Mapping Unit = 25ha / 100m	-	6 years	COPERNICUS	https://land.copernicus. eu/en

12168	Number of young farmers	.xlsx	2010-2020	EU	NUTS2	irregular	irrgular	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12169	Bio-energy produced by a NUTS region	.gpkg	2018	EU	Min. Mapping Unit = 25ha / 100m	-	6 years	COPERNICUS	https://land.copernicus. eu/en
12170	Green areas of high ecological quality	.gpkg	2018	EU	Min. Mapping Unit = 25ha / 100m	-	6 years	COPERNICUS	https://land.copernicus. eu/en
12171	Dispersion of urban areas	.gpkg	2018	EU	Min. Mapping Unit = 25ha / 100m	-	6 years	COPERNICUS	https://land.copernicus. eu/en
12172	Shannon Evenness Index	.gpkg	2018	EU	Min. Mapping Unit = 25ha / 100m	-	6 years	COPERNICUS	https://land.copernicus. eu/en
12173	Flood control service providing area	.tif	2000/2006/ 2012	Europe	cell size = 1km	-	every 6 years	JRC	https://ecosystem- accounts.jrc.ec.europa.e u/map
12174	Share of NUTS region with high travel time to regional centre	.xlsx	2013	EU27+x	NUTS3		not planned	ESPON	https://database.espon. eu/project-data- package/985/
12175	Participation rate in education and training	.xlsx	2000-2022	EU	NUTS2	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12176	Share of farmers with full or basic agricultural training	.xlsx	2010, 2013, 2016, 2020	EU	NUTS2	irregular	irregular	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12177	Cultural vibrancy - number of cultural sites	.geojson		EU	Point data	annual	Yearly	Cultural gems: © European Union and Cultural gems contributors, with data from	https://cultural- gems.jrc.ec.europa.eu/m ap

								OpenStreetMa p (openstreetma p.org) contributors	
12178	Number of educational facilities	.geojson		Global	Point data	annual	Yearly	TECNALIA (based on OpenstreetMa p)	OpenStreetMap
12179	Tourism turnover	.xlsx		EU	NUTS3	annual	Yearly	TECNALIA (based on Eurostat data)	https://ec.europa.eu/eur ostat/web/main/data/da tabase
12180	Tourist accommodation establishments	.xlsx	1990-2011	EU	NUTS3	annual	annual	Eurostat	https://ec.europa.eu/eur ostat/web/main/data/da tabase

11 Annex IV

Description of the Risk Indexes generated by TECNALIA and exposed through the RescueME ATLAS

ID	Description	Format	Time coverage	Area coverage	Spatial resolution / scale	Temporal resolution	Update frequency	Ownership / Author	Access link**
12181	Hazard index of poor air quality on coastal cultural landscapes	Geopackage	2016-2020	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	annual	N/A	TECNALIA	N/A
12182	Exposure index of poor air quality on coastal cultural landscapes	Geopackage	2016-2020	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	annual	N/A	TECNALIA	N/A
12183	Vulnerability index of poor air quality on coastal cultural landscapes	Geopackage	2016-2020	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	annual	N/A	TECNALIA	N/A
12184	Risk index of coastal floods on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100 (RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A

** Data access links are not available as data are restricted

	Hazard index of coastal		1981-2010;	EU-27 plus Iceland, Norway					
12185	floods on	Geopackage	2071-2100 (RCP	and United	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
	coastal cultural		4.5, RCP 8.5)	Kingdom (only					
	landscapes			coastal regions)					
	Exposure index			EU-27 plus					
	of coastal		1981-2010;	Iceland, Norway					
12186	floods on	Geopackage	2071-2100	and United	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
	coastal cultural		2071-2100	Kingdom (only					
	landscapes			coastal regions)					
12187	Vulnerability index of coastal floods on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
12188	Risk index of droughts on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100 (RCP 2.6, RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
12189	Hazard index of droughts on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100 (RCP 2.6, RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
12190	Exposure index of droughts on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
12191	Vulnerability index of droughts on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A

12192	Risk index of heatwaves on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100 (RCP 2.6, RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
12193	Hazard index of heatwaves on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100 (RCP 2.6, RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
12194	Exposure index of heatwaves on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
12195	Vulnerability index of heatwaves on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
12196	Risk index of landslides on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100 (RCP 2.6, RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
12197	Hazard index of landslides on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100 (RCP 2.6, RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
12198	Exposure index of landslides on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
12199	Vulnerability index of	Geopackage	1981-2010; 2071-2100	EU-27 plus Iceland, Norway	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A

				1.1.1.1.1					
	landslides on			and United					
	coastal cultural			Kingdom (only					
	landscapes			coastal regions)					
	Risk index of		1981-2010;	EU-27 plus					
	pluvial floods		2071-2100 (RCP	Iceland, Norway					
121100	on coastal	Geopackage	2.6, RCP 4.5, RCP	and United	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
	cultural			Kingdom (only					
	landscapes		8.5)	coastal regions)					
	Hazard index		1001 2010	EU-27 plus					
	of pluvial		1981-2010;	Iceland, Norway					
121101	floods on	Geopackage	2071-2100 (RCP	and United	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
	coastal cultural	, 0	2.6, RCP 4.5, RCP	Kingdom (only	· · · /	,	,		,
	landscapes		8.5)	coastal regions)					
	Exposure index			EU-27 plus					
	of pluvial			Iceland, Norway					
121102	floods on	Geopackage	1981-2010;	and United	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
	coastal cultural	Geopaenage	2071-2100	Kingdom (only	10100 (2021)	oo yeuro	,/		,,,
	landscapes			coastal regions)					
	Vulnerability			EU-27 plus					
	index of pluvial			Iceland, Norway					
121103	floods on	Geopackage	1981-2010;	and United	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
121105		Geopackage	2071-2100		NU135 (2021)	SU years	N/A	TECNALIA	N/A
	coastal cultural			Kingdom (only					
	landscapes			coastal regions)					
	Risk index of		1981-2010;	EU-27 plus					
	river floods on		2071-2100 (RCP	Iceland, Norway					
121104	coastal cultural	Geopackage	2.6, RCP 4.5, RCP	and United	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
	landscapes		8.5)	Kingdom (only					
			0.07	coastal regions)					
	Hazard index		1981-2010;	EU-27 plus					
	of river floods		2071-2100 (RCP	Iceland, Norway					
121105	on coastal	Geopackage	2.6, RCP 4.5, RCP	and United	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
	cultural		8.5)	Kingdom (only					
	landscapes		0.5)	coastal regions)					
	Exposure index		1081 2010	EU-27 plus					
121106	of river floods	Geopackage	1981-2010;	Iceland, Norway	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
	on coastal		2071-2100	and United					-
	Un cuastai								

	cultural			Kingdom (only					
121107	landscapes Vulnerability index of river floods on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100	coastal regions) EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
121108	Risk index of wildfires on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100 (RCP 2.6, RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
121109	Hazard index of wildfires on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100 (RCP 2.6, RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
121110	Exposure index of wildfires on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
121111	Vulnerability index of wildfires on coastal cultural landscapes	Geopackage	1981-2010; 2071-2100	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
121112	Possible future change of coastal floods risk classes	CSV	1981-2010; 2071-2100 (RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
121113	Possible future change of droughts risk classes	csv	1981-2010; 2071-2100 (RCP 2.6, RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A

121114	Possible future change of heatwaves risk classes	csv	1981-2010; 2071-2100 (RCP 2.6, RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
121115	Possible future change of landslides risk classes	CSV	1981-2010; 2071-2100 (RCP 2.6, RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
121116	Possible future change of pluvial floods risk classes	csv	1981-2010; 2071-2100 (RCP 2.6, RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
121117	Possible future change of river floods risk classes	CSV	1981-2010; 2071-2100 (RCP 2.6, RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A
121118	Possible future change of wildfires risk classes	CSV	1981-2010; 2071-2100 (RCP 2.6, RCP 4.5, RCP 8.5)	EU-27 plus Iceland, Norway and United Kingdom (only coastal regions)	NUTS3 (2021)	30 years	N/A	TECNALIA	N/A

12 Annex V

Description of the new data that will be generated by RescueME

ID	Description	Format	Time coverage	Area coverage	Spatial resolution / scale	Temporal resolution	Update frequency	Ownership / Author	Access link
33200	Geolocated picture with metadata (report) from Chatbot	JSON or geoJSON	timestamp	Point	Mobile phone positioning	timestamp	variable	LINKS	N/A
33201	Event/Topic detected through social media	JSON or geoJSON	variable	BBOX depending on the event	N/A	N/A	variable	LINKS	N/A
33202	Event/Topic report extracted from social media	JSON or geoJSON	variable	BBOX depending on the event Area of Interest	N/A	N/A	variable	LINKS	N/A
33203	Relevant posts in a specific spatio- temporal window, language and hazard/topic	JSON or geoJSON	timestamp	BBOX depending on the event Area of Interest	N/A	N/A	variable	LINKS	N/A
33204	Message from control center to Chatbot users	JSON or geoJSON	days	BBOX depending on the Area of Interest of the	N/A	N/A	variable	LINKS	N/A

				Communicati on					
33205	Mission from control center to Chatbot professional users	JSON or geoJSON	days	BBOX depending on the Area of Interest of the Mission	N/A	N/A	variable	LINKS	N/A
33206	Characterization of CH assets / Labscape topics	JSON or geoJSON	variable	BBOX depending on single assets or overall R- labscape	N/A	N/A	variable	LINKS	N/A
33207	Geolocated picture with metadata (AI- generated) from Sally	JSON or geoJSON	variable	Point	N/A	N/A	variable	LINKS	N/A

13 Partners

technology alliance	ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA DIPARTIMENTO DI ARCHITETTURA	Contro Euro-Mediterraneo au Cambiamenti Climatici	improbables
	Fraunhofer	Hamburg	Local Governments for Sustainability EUROPE
LAS NAVES	LIÈGE université	Links Passion for innovation	MEECO ⁸⁰ Meteorological Environmental Earth Observation
Contraction of the end	SILORITIS GEDPARK	SISTEMA ENVIRONMENTAL INFORMATION MINING	TUHH Hamburg University of Technology

Contact us

www.resilientculturallandscapes.eu

MARIA LUISA QUARTA quarta@meeo.it

MARCO FOLEGANI folegani@meeo.it

STEFANO NATALI natali@sistema.at

Follow us LinkedIn: rescuemeeu Twitter: RescueME_EU

Funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Research Executive Agency (REA). Neither the European Union nor the granting authority can be held responsible for them.

resilientculturallandscapes.eu